THE PERIODIC CAUCHY PROBLEM FOR THE 2-COMPONENT CAMASSA-HOLM SYSTEM

被引:0
|
作者
Thompson, Ryan C. [1 ]
机构
[1] Univ Notre Dame, Dept Math, Notre Dame, IN 46556 USA
关键词
SHALLOW-WATER EQUATION; BLOW-UP PHENOMENA; WELL-POSEDNESS; SOLUTION MAP; NONUNIFORM DEPENDENCE; CONTINUITY PROPERTIES; GEODESIC-FLOW; MODEL;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For Sobolev exponent s > 3/2, it is shown that the data-to-solution map for the 2-component Camassa-Holm system is continuous from H-s x Hs-1(T) into C([0, T]; H-s x Hs-1(T)) but not uniformly continuous. The proof of non-uniform dependence on the initial data is based on the method of approximate solutions, delicate commutator and multiplier estimates, and well-posedness results for the solution and its lifespan. Also, the solution map is Holder continuous if the H-s x Hs-1(T) norm is replaced by an H-r x Hr-1(T) norm for 0 <= r < s.
引用
收藏
页码:155 / 182
页数:28
相关论文
共 50 条
  • [21] On the Cauchy problem for the generalized Camassa-Holm equation
    Yin, Zhaoyang
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 66 (02) : 460 - 471
  • [22] The Cauchy problem for the generalized Camassa-Holm equation
    Yan, Wei
    Li, Yongsheng
    Zhang, Yimin
    [J]. APPLICABLE ANALYSIS, 2014, 93 (07) : 1358 - 1381
  • [23] On the Cauchy problem for the fractional Camassa-Holm equation
    Mutlubas, N. Duruk
    [J]. MONATSHEFTE FUR MATHEMATIK, 2019, 190 (04): : 755 - 768
  • [24] THE CAUCHY PROBLEM FOR A GENERALIZED CAMASSA-HOLM EQUATION
    Himonas, A. Alexandrou
    Holliman, Curtis
    [J]. ADVANCES IN DIFFERENTIAL EQUATIONS, 2014, 19 (1-2) : 161 - 200
  • [25] On the Cauchy problem for a generalized Camassa-Holm equation
    Mustafa, OG
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 64 (06) : 1382 - 1399
  • [26] On the Cauchy problem for a weakly dissipative coupled Camassa-Holm system
    Zhang, Dongxue
    Zhou, Yonghui
    Ji, Shuguan
    Li, Xiaowan
    [J]. MONATSHEFTE FUR MATHEMATIK, 2023, 202 (04): : 857 - 873
  • [27] On the Cauchy problem for a modified Camassa-Holm equation
    Luo, Zhaonan
    Qiao, Zhijun
    Yin, Zhaoyang
    [J]. MONATSHEFTE FUR MATHEMATIK, 2020, 193 (04): : 857 - 877
  • [28] ON THE CAUCHY PROBLEM FOR A GENERALIZED CAMASSA-HOLM EQUATION
    Chen, Defu
    Li, Yongsheng
    Yan, Wei
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2015, 35 (03) : 871 - 889
  • [29] Perturbational blowup solutions to the 2-component Camassa-Holm equations
    Yuen, Manwai
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 390 (02) : 596 - 602
  • [30] Analyticity of the Cauchy Problem for a Three-Component Generalization of Camassa-Holm Equation
    Shi, Cuiyun
    Bin, Maojun
    Zhang, Zaiyun
    [J]. MATHEMATICS, 2024, 12 (07)