Updating an LU factorization with pivoting

被引:34
|
作者
Quintana-Orti, Enrique S. [1 ]
Van De Geijn, Robert A. [2 ]
机构
[1] Univ Jaime I, Dept Ingn & Ciencia Computadores, Castellon de La Plana 12071, Spain
[2] Univ Texas Austin, Dept Comp Sci, Austin, TX 78712 USA
来源
关键词
algorithms; performance; LU factorization; linear systems; updating; pivoting;
D O I
10.1145/1377612.1377615
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We show how to compute an LU factorization of a matrix when the factors of a leading principle submatrix are already known. The approach incorporates pivoting akin to partial pivoting, a strategy we call incremental pivoting. An implementation using the Formal Linear Algebra Methods Environment (FLAME) application programming interface (API) is described. Experimental results demonstrate practical numerical stability and high performance on an Intel Itanium2 processor-based server.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 50 条
  • [41] Nested-dissection orderings for sparse LU with partial pivoting
    Brainman, I
    Toledo, S
    [J]. NUMERICAL ANALYSIS AND ITS APPLICATIONS, 2001, 1988 : 125 - 132
  • [42] Crout versions of ILU factorization with pivoting for sparse symmetric matrices
    Li, N
    Saad, Y
    [J]. ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2005, 20 : 75 - 85
  • [43] SYMBOLIC FACTORIZATION FOR SPARSE GAUSSIAN-ELIMINATION WITH PARTIAL PIVOTING
    GEORGE, A
    NG, E
    [J]. SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1987, 8 (06): : 877 - 898
  • [44] On fast factorization pivoting methods for sparse symmetric indefinite systems
    Schenk, Olaf
    Gaertner, Klaus
    [J]. ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2006, 23 : 158 - 179
  • [45] ON SYSTOLIC ARRAYS FOR UPDATING THE CHOLESKY FACTORIZATION
    SCHREIBER, R
    TANG, WP
    [J]. BIT, 1986, 26 (04): : 451 - 466
  • [46] LU DECOMPOSITION OF M-MATRICES BY ELIMINATION WITHOUT PIVOTING
    FUNDERLIC, RE
    PLEMMONS, RJ
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1981, 41 (DEC) : 99 - 110
  • [47] Nested-dissection orderings for sparse LU with partial pivoting
    Brainman, I
    Toledo, S
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2002, 23 (04) : 998 - 1012
  • [48] Updating/downdating the NonNegative Matrix Factorization
    San Juan, P.
    Vidal, A. M.
    Garcia-Molla, V. M.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 318 : 59 - 68
  • [49] A BLAS-3 version of the QR factorization with column pivoting
    Quintana-Orti, G
    Sun, IB
    Bischof, CH
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 19 (05): : 1486 - 1494
  • [50] Add-sub pivoting triangular factorization for symmetric matrix
    Hu, Shengrong
    Yang, Wenjun
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 355 : 116 - 127