Updating an LU factorization with pivoting

被引:34
|
作者
Quintana-Orti, Enrique S. [1 ]
Van De Geijn, Robert A. [2 ]
机构
[1] Univ Jaime I, Dept Ingn & Ciencia Computadores, Castellon de La Plana 12071, Spain
[2] Univ Texas Austin, Dept Comp Sci, Austin, TX 78712 USA
来源
关键词
algorithms; performance; LU factorization; linear systems; updating; pivoting;
D O I
10.1145/1377612.1377615
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We show how to compute an LU factorization of a matrix when the factors of a leading principle submatrix are already known. The approach incorporates pivoting akin to partial pivoting, a strategy we call incremental pivoting. An implementation using the Formal Linear Algebra Methods Environment (FLAME) application programming interface (API) is described. Experimental results demonstrate practical numerical stability and high performance on an Intel Itanium2 processor-based server.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 50 条
  • [1] UPDATING METHOD FOR LU FACTORIZATION
    HAJJ, IN
    [J]. ELECTRONICS LETTERS, 1972, 8 (07) : 186 - &
  • [2] Managing the Complexity of Lookahead for LU Factorization with Pivoting
    Chan, Ernie
    van de Geijn, Robert
    Chapman, Andrew
    [J]. SPAA '10: PROCEEDINGS OF THE TWENTY-SECOND ANNUAL SYMPOSIUM ON PARALLELISM IN ALGORITHMS AND ARCHITECTURES, 2010, : 200 - 208
  • [3] Using Additive Modifications in LU Factorization Instead of Pivoting
    Lindquist, Neil
    Luszczek, Piotr
    Dongarra, Jack
    [J]. PROCEEDINGS OF THE 37TH INTERNATIONAL CONFERENCE ON SUPERCOMPUTING, ACM ICS 2023, 2023, : 14 - 24
  • [4] Parallel symbolic factorization for sparse lu with static pivoting
    Grigori, Laura
    Demmel, James W.
    Li, Xiaoye S.
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2007, 29 (03): : 1289 - 1314
  • [5] A Supernodal Approach to Incomplete LU Factorization with Partial Pivoting
    Li, Xiaoye S.
    Shao, Meiyue
    [J]. ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2011, 37 (04):
  • [6] LU Factorization with Partial Pivoting for a Multicore System with Accelerators
    Kurzak, Jakub
    Luszczek, Piotr
    Faverge, Mathieu
    Dongarra, Jack
    [J]. IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2013, 24 (08) : 1613 - 1621
  • [7] Stability and Sensitivity of Tridiagonal LU Factorization without Pivoting
    M. Isabel Bueno
    Froilán M. Dopico
    [J]. BIT Numerical Mathematics, 2004, 44 : 651 - 673
  • [8] Stability and sensitivity of tridiagonal LU factorization without pivoting
    Bueno, MI
    Dopico, FM
    [J]. BIT NUMERICAL MATHEMATICS, 2004, 44 (04) : 651 - 673
  • [9] COLUMN LU FACTORIZATION WITH PIVOTING ON A MESSAGE-PASSING MULTIPROCESSOR
    DAVIS, GJ
    [J]. SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1986, 7 (04): : 538 - 550
  • [10] On the row merge tree for sparse LU factorization with partial pivoting
    L. Grigori
    M. Cosnard
    E.G. Ng
    [J]. BIT Numerical Mathematics, 2007, 47 : 45 - 76