Nonlinear normal modes in pendulum systems

被引:12
|
作者
Klimenko, A. A. [1 ]
Mikhlin, Y. V. [1 ]
Awrejcewicz, J. [2 ]
机构
[1] Natl Tech Univ KPI, Dept Appl Math, Kharkov, Ukraine
[2] Tech Univ Lodz, Dept Automat & Biomech, PL-90924 Lodz, Poland
关键词
Pendulum systems; Nonlinear normal modes;
D O I
10.1007/s11071-012-0496-x
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Dynamics of the spring pendulum and of the system containing a pendulum absorber is considered by using the nonlinear normal modes' theory and the asymptotic-numeric procedures. This makes it possible to investigate the pendulum dynamics for both the small and large vibration amplitudes. The vibration modes stability is analyzed by different methods. Regions of the nonlinear normal modes' stability/instability are obtained. The nonlinear normal modes' approach and the modified Rauscher method are used to construct forced vibration modes in the system with a pendulum absorber.
引用
收藏
页码:797 / 813
页数:17
相关论文
共 50 条
  • [41] Extended invariant cones as Nonlinear Normal Modes of inhomogeneous piecewise linear systems
    Karoui, A. Yassine
    Leine, Remco I.
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2025, 174
  • [42] A computational algebraic geometry technique for determining nonlinear normal modes of structural systems
    Petromichelakis, Ioannis
    Kougioumtzoglou, Ioannis A.
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2021, 135
  • [43] Strict Nonlinear Normal Modes of Systems Characterized by Scalar Functions on Riemannian Manifolds
    Albu-Schaeffer, Alin
    Lakatos, Dominic
    Stramigioli, Stefano
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (02) : 1910 - 1917
  • [44] BUSHES OF MODES AND NORMAL VIBRATIONS IN NONLINEAR DYNAMICAL-SYSTEMS WITH DISCRETE SYMMETRY
    SAKHNENKO, VP
    CHECHIN, GM
    DOKLADY AKADEMII NAUK, 1994, 338 (01) : 42 - 45
  • [45] A Hybrid Continuation Framework for Analyzing Nonlinear Normal Modes of Systems With Contact Nonlinearity
    Huang, Shih-Chun
    Tien, Meng-Hsuan
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2024, 19 (07):
  • [46] USAGE OF NONLINEAR NORMAL MODES IN DYNAMICS
    Byrtus, M.
    ENGINEERING MECHANICS 2011, 2011, : 71 - 74
  • [47] Stability of strongly nonlinear normal modes
    Recktenwald, Geoffrey
    Rand, Richard
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2007, 12 (07) : 1128 - 1132
  • [48] Identifying the significance of nonlinear normal modes
    Hill, T. L.
    Cammarano, A.
    Neild, S. A.
    Barton, D. A. W.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2017, 473 (2199):
  • [49] Nonlinear normal modes of a cantilever beam
    Nayfeh, AH
    Chin, C
    Nayfeh, SA
    JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME, 1995, 117 (04): : 477 - 481
  • [50] Nonlinear normal modes for damage detection
    Lacarbonara, Walter
    Carboni, Biagio
    Quaranta, Giuseppe
    MECCANICA, 2016, 51 (11) : 2629 - 2645