Conformally Covariant Systems of Wave Equations and their Equivalence to Einstein's Field Equations

被引:18
|
作者
Paetz, Tim-Torben [1 ]
机构
[1] Univ Vienna, Gravitat Phys, A-1090 Vienna, Austria
来源
ANNALES HENRI POINCARE | 2015年 / 16卷 / 09期
基金
奥地利科学基金会;
关键词
INITIAL-VALUE-PROBLEM; CAUCHY-PROBLEM; ASYMPTOTICALLY SIMPLE; CHARACTERISTIC CONE; VACUUM; EXISTENCE; 1ST-ORDER;
D O I
10.1007/s00023-014-0359-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We derive, in 3 + 1 spacetime dimensions, two alternative systems of quasi-linear wave equations, based on Friedrich's conformal field equations. We analyse their equivalence to Einstein's vacuum field equations when appropriate constraint equations are satisfied by the initial data. As an application, the characteristic initial value problem for the Einstein equations with data on past null infinity is reduced to a characteristic initial value problem for wave equations with data on an ordinary light-cone.
引用
收藏
页码:2059 / 2129
页数:71
相关论文
共 50 条
  • [21] SPHERICALLY SYMMETRIC WAVE SOLUTION OF EINSTEIN'S EQUATIONS IN THE WEAK FIELD APPROXIMATION
    Vyblyi, Yury P.
    Leonovich, Anatoly A.
    [J]. DOKLADY NATSIONALNOI AKADEMII NAUK BELARUSI, 2020, 64 (04): : 399 - 402
  • [22] CONFORMALLY FLAT SOLUTIONS TO THE EINSTEIN-MAXWELL-EQUATIONS
    MELFO, A
    RAGO, H
    [J]. ASTROPHYSICS AND SPACE SCIENCE, 1992, 193 (01) : 9 - 15
  • [23] On the equivalence of approximate stationary axially symmetric solutions of the Einstein field equations
    Boshkayev, Kuantay
    Quevedo, Hernando
    Toktarbay, Saken
    Zhami, Bakytzhan
    Abishev, Medeu
    [J]. GRAVITATION & COSMOLOGY, 2016, 22 (04): : 305 - 311
  • [24] Conformally Invariant Generalization of Einstein Equations and the Causality Principle
    M.V. Gorbatenko
    A.V. Pushkin
    [J]. General Relativity and Gravitation, 2002, 34 : 175 - 188
  • [25] Conformally invariant generalization of Einstein equations and the causality principle
    Gorbatenko, MV
    Pushkin, AV
    [J]. GENERAL RELATIVITY AND GRAVITATION, 2002, 34 (02) : 175 - 188
  • [26] The Einstein-Maxwell Equations and Conformally Kahler Geometry
    LeBrun, Claude
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2016, 344 (02) : 621 - 653
  • [27] The Einstein–Maxwell Equations and Conformally Kähler Geometry
    Claude LeBrun
    [J]. Communications in Mathematical Physics, 2016, 344 : 621 - 653
  • [28] On the equivalence of approximate stationary axially symmetric solutions of the Einstein field equations
    Kuantay Boshkayev
    Hernando Quevedo
    Saken Toktarbay
    Bakytzhan Zhami
    Medeu Abishev
    [J]. Gravitation and Cosmology, 2016, 22 : 305 - 311
  • [29] On fractional and fractal Einstein's field equations
    El-Nabulsi, Rami Ahmad
    Golmankhaneh, Alireza Khalili
    [J]. MODERN PHYSICS LETTERS A, 2021, 36 (05)
  • [30] Einstein's field equations as a fold bifurcation
    Kohli, Ikjyot Singh
    Haslam, Michael C.
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2018, 123 : 434 - 437