Additive Intensity Regression Models in Corporate Default Analysis

被引:4
|
作者
Lando, David [1 ]
Medhat, Mamdouh [1 ]
Nielsen, Mads Stenbo [1 ]
Nielsen, Soren Feodor [1 ]
机构
[1] Copenhagen Business Sch, Copenhagen, Denmark
关键词
default risk modeling; Aalen's additive regression model; martingale residual processes; PREDICTION;
D O I
10.1093/jjfinec/nbs018
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
We consider additive intensity (Aalen) models as an alternative to the multiplicative intensity (Cox) models for analyzing the default risk of a sample of rated, nonfinancial U.S. firms. The setting allows for estimating and testing the significance of time-varying effects. We use a variety of model checking techniques to identify misspecifications. In our final model, we find evidence of time-variation in the effects of distance-to-default and short-to-long term debt. Also we identify interactions between distance-to-default and other covariates, and the quick ratio covariate is significant. None of our macroeconomic covariates are significant.
引用
收藏
页码:443 / 485
页数:43
相关论文
共 50 条
  • [31] Variable selection in functional additive regression models
    Manuel Febrero-Bande
    Wenceslao González-Manteiga
    Manuel Oviedo de la Fuente
    [J]. Computational Statistics, 2019, 34 : 469 - 487
  • [32] Additive versus multiplicative models in ecologic regression
    W. Douglas Thompson
    Daniel Wartenberg
    [J]. Stochastic Environmental Research and Risk Assessment, 2007, 21 : 635 - 646
  • [33] Component selection in additive quantile regression models
    Hohsuk Noh
    Eun Ryung Lee
    [J]. Journal of the Korean Statistical Society, 2014, 43 : 439 - 452
  • [34] Component selection in additive quantile regression models
    Noh, Hohsuk
    Lee, Eun Ryung
    [J]. JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2014, 43 (03) : 439 - 452
  • [35] Wavelet threshold estimation for additive regression models
    Zhang, SL
    Wong, MY
    [J]. ANNALS OF STATISTICS, 2003, 31 (01): : 152 - 173
  • [36] Variable selection in functional additive regression models
    Febrero-Bande, Manuel
    Gonzalez-Manteiga, Wenceslao
    Oviedo de la Fuente, Manuel
    [J]. COMPUTATIONAL STATISTICS, 2019, 34 (02) : 469 - 487
  • [37] Variable selection in Functional Additive Regression Models
    Febrero-Bande, Manuel
    Gonzalez-Manteiga, Wenceslao
    Oviedo de la Fuente, Manuel
    [J]. FUNCTIONAL STATISTICS AND RELATED FIELDS, 2017, : 113 - 122
  • [38] Mixture additive hazards cure model with latent variables: Application to corporate default data
    Yang, Qi
    He, Haijin
    Lu, Bin
    Song, Xinyuan
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2022, 167
  • [39] Risk identification and default time analysis of corporate bonds
    Li, Yang-Guang
    Yu, Mu-Ran
    Li, Lu-Xi
    Han, Han
    Liu, Ying
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2021, : 3254 - 3258
  • [40] FORWARD ADDITIVE REGRESSION FOR ULTRAHIGH-DIMENSIONAL NONPARAMETRIC ADDITIVE MODELS
    Zhong, Wei
    Duan, Sunpeng
    Zhu, Liping
    [J]. STATISTICA SINICA, 2020, 30 (01) : 175 - 192