Innovations for random fields

被引:3
|
作者
Hida, T [1 ]
Si, S
机构
[1] Meijo Univ, Fac Sci & Technol, Nagoya, Aichi 4688502, Japan
[2] Aichi Prefectural Univ, Aichi 4801198, Japan
关键词
D O I
10.1142/S0219025798000272
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
There is a famous formula called Levy's stochastic infinitesimal equation for a stochastic process X(t) expressed in the form delta X(t) = Phi (X(s),s less than or equal to t,Y-t, t, dt), t is an element of R-1. We propose a generalization of this equation for a random field X(C) indexed by a contour C. Assume that the X(C) is homogeneous in a white noise x, say of degree n, we can then appeal to the classical theory of variational calculus and to the modern theory of white noise analysis in order to discuss the innovation for the X(C) and hence its probabilistic structure. Some of future directions are also mentioned.
引用
收藏
页码:499 / 509
页数:11
相关论文
共 50 条
  • [21] Polyadic random fields
    Malyarenko, Anatoliy
    Ostoja-Starzewski, Martin
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (05):
  • [22] Steerable random fields
    Roth, Stefan
    Black, Michael J.
    2007 IEEE 11TH INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOLS 1-6, 2007, : 1199 - 1206
  • [23] COMPLEX RANDOM FIELDS
    MILLER, KS
    INFORMATION SCIENCES, 1975, 9 (03) : 185 - 225
  • [24] Inequalities for random fields
    Green, ML
    STOCHASTIC ANALYSIS AND APPLICATIONS, 1998, 16 (03) : 463 - 500
  • [25] Structures in random fields
    BetancortRijo, JE
    STATISTICAL CHALLENGES IN MODERN ASTRONOMY II, 1997, : 397 - 399
  • [26] Polyadic random fields
    Anatoliy Malyarenko
    Martin Ostoja-Starzewski
    Zeitschrift für angewandte Mathematik und Physik, 2022, 73
  • [27] RANDOM EXTERNAL FIELDS
    IMRY, Y
    JOURNAL OF STATISTICAL PHYSICS, 1984, 34 (5-6) : 849 - 862
  • [28] INTERPOLATION OF RANDOM FIELDS
    NAGORNII, VN
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR, 1971, (04): : 319 - &
  • [29] Discriminative Random Fields
    Kumar, Sanjiv
    Hebert, Martial
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2006, 68 (02) : 179 - 201
  • [30] Discriminative Random Fields
    Sanjiv Kumar
    Martial Hebert
    International Journal of Computer Vision, 2006, 68 : 179 - 201