Phosphorus gettering of iron by screen-printed emitters in monocrystalline Czochralski silicon wafers

被引:1
|
作者
Pletzer, Tobias M. [1 ]
Suckow, Stephan [1 ]
Stegemann, Elmar F. R. [2 ]
Windgassen, Horst [1 ]
Baetzner, Derk L. [3 ]
Kurz, Heinrich [1 ]
机构
[1] Univ Aachen, Rhein Westfal TH Aachen, Inst Semicond Elect, D-52074 Aachen, Germany
[2] OT Thalheim, Q Cells SE, D-06766 Bitterfeld, Germany
[3] Roth & Rau Switzerland AG, CH-2000 Neuchatel, Switzerland
来源
PROGRESS IN PHOTOVOLTAICS | 2013年 / 21卷 / 05期
关键词
gettering; iron concentration; screen-printing; phosphorus doping paste; monocrystalline Czochralski silicon; MINORITY-CARRIER LIFETIME; CRYSTALLINE SILICON;
D O I
10.1002/pip.2175
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In this paper, we demonstrate single-sided screen-printed emitters in thin monocrystalline Czochralski silicon (Cz-Si) wafers with an improved gettering of iron compared with conventional double-sided POCl3 emitters. The phosphorus dopant pastes used have to be chosen carefully to provide a sufficiently low emitter sheet resistance and to avoid iron contamination. The iron concentration is determined in a non-destructive way from the minority carrier lifetime obtained by quasi-steady-state photoconductance measurements, down to levels not yet demonstrated for screen-printed emitters. In addition, the well-known metastable boron-oxygen complexes in Cz-Si have been transferred into a stable state by light-induced degradation prior to these measurements. Copyright (c) 2012 John Wiley & Sons, Ltd.
引用
收藏
页码:900 / 905
页数:6
相关论文
共 50 条
  • [41] Screen-printed contacts for crystalline silicon solar cells: an overview
    Mehta, Vishal R.
    Sopori, Bhushan L.
    Ravindra, Nuggehalli M.
    EMERGING MATERIALS RESEARCH, 2022, 11 (03) : 284 - 302
  • [42] Intrinsic gettering in nitrogen-doped and hydrogen-annealed Czochralski-grown silicon wafers
    Goto, H
    Pan, LS
    Tanaka, M
    Kashima, K
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 2001, 40 (6A): : 3944 - 3946
  • [43] SCREEN-PRINTED PARTICULATE SILICON DEVICES FOR PHOTOVOLTAIC APPLICATIONS.
    Bohm, M.
    Urbanski, E.
    Delahoy, A.E.
    Kiss, Z.
    1600, (20):
  • [44] Modeling phosphorus diffusion gettering of iron in single crystal silicon
    Haarahiltunen, A.
    Savin, H.
    Yli-Koski, M.
    Talvitie, H.
    Sinkkonen, J.
    JOURNAL OF APPLIED PHYSICS, 2009, 105 (02)
  • [45] 19% efficient n-type Czochralski silicon solar cells with screen-printed aluminium-alloyed rear emitter
    Schmiga, Christian
    Nagel, Henning
    Schmidt, Jan
    PROGRESS IN PHOTOVOLTAICS, 2006, 14 (06): : 533 - 539
  • [46] Gettering of iron by aluminum oxide thin films on silicon wafers: Kinetics and mechanisms
    Le, Tien Trong
    Yang, Zhongshu
    Liang, Wensheng
    Macdonald, Daniel
    Liu, AnYao
    JOURNAL OF APPLIED PHYSICS, 2024, 135 (06)
  • [47] Effect of Phosphorus and Boron Diffusion Gettering on the Light Induced Degradation in Multicrystalline Silicon Wafers
    Chakraborty, Sagnik
    Wilson, Marshall
    Manalo, Maria Luz
    Sarda, Abhay
    Wong, Johnson
    Sharma, Romika
    Aberle, Armin G.
    Li, Joel B.
    PROCEEDINGS OF THE SNEC 11TH INTERNATIONAL PHOTOVOLTAIC POWER GENERATION CONFERENCE & EXHIBITION, 2017, 130 : 36 - 42
  • [48] Efficiency of boron gettering for iron impurities in p/p(+) epitaxial silicon wafers
    Miyazaki, M
    Miyazaki, S
    Ogushi, S
    Ochiai, T
    Sano, M
    Shigematsu, T
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS, 1997, 36 (4A): : L380 - L381
  • [49] Effects of Screen-Printed Aluminum-Alloyed Front Emitter on Characteristics of Screen-Printed N-Type Silicon Solar Cells
    Chuang, Wei-Ching
    Nguyen, Manh-Tan
    Cheng, Chin-Lung
    Liu, Chi-Chung
    Ji, Guan-Yu
    IEEE INTERNATIONAL SYMPOSIUM ON NEXT-GENERATION ELECTRONICS 2013 (ISNE 2013), 2013,
  • [50] Screen-printed silicon solar cells with texturized and passivated emitter diffused from spin-on phosphorus source
    Zdanowicz, T
    Lipinski, M
    METAL/NONMETAL MICROSYSTEMS: PHYSICS, TECHNOLOGY, AND APPLICATIONS, 1996, 2780 : 265 - 269