Equivariant cohomology of cohomogeneity-one actions: The topological case

被引:1
|
作者
Goertsches, Oliver [1 ]
Mare, Augustin-Liviu [2 ]
机构
[1] Philipps Univ, Fachbereich Math & Informat, Marburg, Germany
[2] Univ Regina, Dept Math & Stat, Regina, SK, Canada
关键词
Compact Lie groups; Cohomogeneity one group actions on topological manifolds; Equivariant cohomology; Cohen-Macaulay rings;
D O I
10.1016/j.topol.2016.12.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that for any cohomogeneity-one continuous action of a compact connected Lie group G on a closed topological manifold the equivariant cohomology equipped with its canonical H*(BG)-module structure is Cohen-Macaulay. The proof relies on the structure theorem for these actions recently obtained by Calaz-Garcia and Zarei. We generalize in this way our previous result concerning smooth actions. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:93 / 96
页数:4
相关论文
共 50 条
  • [1] The equivariant cohomology ring of a cohomogeneity-one action
    Carlson, Jeffrey D.
    Goertsches, Oliver
    He, Chen
    Mare, Augustin-Liviu
    GEOMETRIAE DEDICATA, 2019, 203 (01) : 205 - 223
  • [2] The equivariant cohomology ring of a cohomogeneity-one action
    Jeffrey D. Carlson
    Oliver Goertsches
    Chen He
    Augustin-Liviu Mare
    Geometriae Dedicata, 2019, 203 : 205 - 223
  • [3] Equivariant cohomology of cohomogeneity one actions
    Goertsches, Oliver
    Mare, Augustin-Liviu
    TOPOLOGY AND ITS APPLICATIONS, 2014, 167 : 36 - 52
  • [4] Classification of cohomogeneity-one strings
    Ishihara, H
    Kozaki, H
    PHYSICAL REVIEW D, 2005, 72 (06):
  • [5] Diagonalizing cohomogeneity-one Einstein metrics
    Dammerman, Brandon
    JOURNAL OF GEOMETRY AND PHYSICS, 2009, 59 (09) : 1271 - 1284
  • [6] Cohomogeneity-one Lagrangian mean curvature flow
    Madnick, Jesse
    Wood, Albert
    MATHEMATISCHE ANNALEN, 2025, 391 (03) : 4325 - 4388
  • [7] Cohomogeneity-one G2-structures
    Cleyton, R
    Swann, A
    JOURNAL OF GEOMETRY AND PHYSICS, 2002, 44 (2-3) : 202 - 220
  • [8] Cohomogeneity-one quasi-Einstein metrics
    Buttsworth, Timothy
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 470 (01) : 201 - 217
  • [9] Cohomogeneity-one solutions in Einstein-Maxwell-dilaton gravity
    Lim, Yen-Kheng
    PHYSICAL REVIEW D, 2017, 95 (10)
  • [10] Cohomogeneity-one Einstein-Weyl structures: a local approach
    Bonneau, G
    JOURNAL OF GEOMETRY AND PHYSICS, 2001, 39 (02) : 135 - 173