Increase of O-Glycosylated Oncofetal Fibronectin in High Glucose-Induced Epithelial-Mesenchymal Transition of Cultured Human Epithelial Cells

被引:61
|
作者
Alisson-Silva, Frederico [1 ]
Freire-de-Lima, Leonardo [1 ]
Donadio, Joana L. [1 ]
Lucena, Miguel C. [1 ]
Penha, Luciana [1 ]
Sa-Diniz, Julliana N. [1 ]
Dias, Wagner B. [1 ]
Todeschini, Adriane R. [1 ]
机构
[1] Univ Fed Rio de Janeiro, Inst Biofis Carlos Chagas Filho, BR-21941 Rio De Janeiro, Brazil
来源
PLOS ONE | 2013年 / 8卷 / 04期
关键词
ALPHA-D-GALACTOSAMINE; DIABETES-MELLITUS; METABOLISM; ACTIVATION; VARIANTS; FIBROSIS; MOTILITY; ADHESION; BETA-1; GROWTH;
D O I
10.1371/journal.pone.0060471
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Growing evidences indicate that aberrant glycosylation can modulate tumor cell invasion and metastasis. The process termed "epithelial-mesenchymal transition" (EMT) provides a basic experimental model to shed light on this complex process. The EMT involves a striking decline in epithelial markers, accompanied by enhanced expression of mesenchymal markers, culminating in cell morphology change and increased cell motility. Few recent studies have established the participation glycosylation during EMT. Studies now come into knowledge brought to light the involvement of a site-specific O-glycosylation in the IIICS domain of human oncofetal fibronectin (onfFN) during the EMT process. Herein we show that high glucose induces EMT in A549 cells as demonstrated by TGF-beta secretion, cell morphology changes, increased cellular motility and the emergence of mesenchymal markers. The hyperglycemic conditions increased onfFN protein levels, promoted an up regulation of mRNA levels for ppGalNAc-T6 and FN IIICS domain, which contain the hexapeptide (VTHPGY) required for onfFN biosynthesis. Glucose effect involves hexosamine (HBP) biosynthetic pathway as overexpression of glutamine: fructose-6-phosphate amidotransferase increases mesenchymal markers, onfFN levels and mRNA levels for FN IIICS domain. In summary, our results demonstrate, for the first time that the metabolism of glucose through HBP promotes O-glycosylation of the oncofetal form of FN during EMT modulating tumorogenesis.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Protective Effect of Znt7 on High Glucose-Induced Epithelial-to-Mesenchymal Transition in Renal Tubular Epithelial Cells
    Zhang, Xiuli
    Lian, Xu
    Liang, Dan
    Zhang, Lianzhi
    Liu, Shengquan
    Yang, Lina
    Chi, Zhi-Hong
    Gu, Harvest F.
    KIDNEY & BLOOD PRESSURE RESEARCH, 2018, 43 (02): : 500 - 512
  • [32] Scopoletin alleviates high glucose-induced toxicity in human renal proximal tubular cells via inhibition of oxidative damage, epithelial-mesenchymal transition, and fibrogenesis
    Kundu, Sourav
    Ghosh, Sitara
    Sahu, Bidya Dhar
    MOLECULAR BIOLOGY REPORTS, 2024, 51 (01)
  • [33] TWEAK enhances TGF-β-induced epithelial-mesenchymal transition in human bronchial epithelial cells
    Yukinari Itoigawa
    Norihiro Harada
    Sonoko Harada
    Yoko Katsura
    Fumihiko Makino
    Jun Ito
    Fariz Nurwidya
    Motoyasu Kato
    Fumiyuki Takahashi
    Ryo Atsuta
    Kazuhisa Takahashi
    Respiratory Research, 16
  • [34] TWEAK enhances TGF-β-induced epithelial-mesenchymal transition in human bronchial epithelial cells
    Itoigawa, Yukinari
    Harada, Norihiro
    Harada, Sonoko
    Katsura, Yoko
    Makino, Fumihiko
    Ito, Jun
    Nurwidya, Fariz
    Kato, Motoyasu
    Takahashi, Fumiyuki
    Atsuta, Ryo
    Takahashi, Kazuhisa
    RESPIRATORY RESEARCH, 2015, 16
  • [35] ZINC SUPPLEMENTATION ATTENUATES HIGH GLUCOSE-INDUCED EPITHELIAL-TO-MESENCHYMAL TRANSITION OF PERITONEAL MESOTHELIAL CELLS
    Zhang, Xiuli
    Ma, Jianfei
    NEPHROLOGY DIALYSIS TRANSPLANTATION, 2013, 28 : 222 - 223
  • [36] Zinc Supplementation Attenuates High Glucose-Induced Epithelial-to-Mesenchymal Transition of Peritoneal Mesothelial Cells
    Zhang, Xiuli
    Wang, Jun
    Fan, Yi
    Yang, Lina
    Wang, Lining
    Ma, Jianfei
    BIOLOGICAL TRACE ELEMENT RESEARCH, 2012, 150 (1-3) : 229 - 235
  • [37] Zinc Supplementation Attenuates High Glucose-Induced Epithelial-to-Mesenchymal Transition of Peritoneal Mesothelial Cells
    Xiuli Zhang
    Jun Wang
    Yi Fan
    Lina Yang
    Lining Wang
    Jianfei Ma
    Biological Trace Element Research, 2012, 150 : 229 - 235
  • [38] Nitro-oleic acid inhibits the high glucose-induced epithelial-mesenchymal transition in peritoneal mesothelial cells and attenuates peritoneal fibrosis
    Su, Wenyan
    Wang, Haiping
    Feng, ZiYan
    Sun, Jing
    AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY, 2020, 318 (02) : F457 - F467
  • [39] Eucalyptol ameliorates high glucose-induced epithelial to mesenchymal transition and renal tubulointerstitial fibrosis
    Kim, D.
    Kang, M.
    Kang, Y.
    MOLECULAR BIOLOGY OF THE CELL, 2016, 27
  • [40] Epithelial-Mesenchymal Transition in Kidney Tubular Epithelial Cells Induced by Globotriaosylsphingosine and Globotriaosylceramide
    Jeon, Yeo Jin
    Jung, Namhee
    Park, Joo-Won
    Park, Hae-Young
    Jung, Sung-Chul
    PLOS ONE, 2015, 10 (08):