Floating Gate Transistor-Based Accurate Digital In-Memory Computing for Deep Neural Networks

被引:1
|
作者
Han, Runze [1 ]
Huang, Peng [1 ]
Xiang, Yachen [1 ]
Hu, Hong [2 ]
Lin, Sheng [3 ]
Dong, Peiyan [3 ]
Shen, Wensheng [1 ]
Wang, Yanzhi [3 ]
Liu, Xiaoyan [1 ]
Kang, Jinfeng [1 ]
机构
[1] Peking Univ, Sch Integrated Circuits, Beijing 100871, Peoples R China
[2] GigaDevice Semicond Inc, Beijing 100094, Peoples R China
[3] Northeastern Univ, Dept Elect & Comp Engn, Boston, MA 02461 USA
关键词
deep neural networks; flash memory; floating gate transistors; in-memory computing; parallel computing; MEMRISTOR; EFFICIENT; GAME; GO;
D O I
10.1002/aisy.202200127
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
To improve the computing speed and energy efficiency of deep neural network (DNN) applications, in-memory computing with nonvolatile memory (NVM) is proposed to address the time-consuming and energy-hungry data shuttling issue. Herein, a digital in-memory computing method for convolution computing, which holds the key to DNNs, is proposed. Based on the proposed method, a floating gate transistor-based in-memory computing chip for accurate convolution computing with high parallelism is created. The proposed digital in-memory computing method can achieve the central processing unit (CPU)-equivalent precision with the same neural network architecture and parameters, different from the analogue or digital-analogue-mixed in-memory computing techniques. Based on the fabricated floating gate transistor-based in-memory computing chip, a hardware LeNet-5 neural network is built. The chip achieves 96.25% accuracy on the full Modified National Institute of Standards and Technology database, which is the same as the result computed by the CPU with the same neural network architecture and parameters.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] OxRRAM-Based Analog in-Memory Computing for Deep Neural Network Inference: A Conductance Variability Study
    Doevenspeck, J.
    Degraeve, R.
    Fantini, A.
    Cosemans, S.
    Mallik, A.
    Debacker, P.
    Verkest, D.
    Lauwereins, R.
    Dehaene, W.
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2021, 68 (05) : 2301 - 2305
  • [42] Memristors-From In-Memory Computing, Deep Learning Acceleration, and Spiking Neural Networks to the Future of Neuromorphic and Bio-Inspired Computing
    Mehonic, Adnan
    Abu Sebastian
    Rajendran, Bipin
    Simeone, Osvaldo
    Vasilaki, Eleni
    Kenyon, Anthony J.
    ADVANCED INTELLIGENT SYSTEMS, 2020, 2 (11)
  • [43] Exploring Model Stability of Deep Neural Networks for Reliable RRAM-Based In-Memory Acceleration
    Krishnan, Gokul
    Yang, Li
    Sun, Jingbo
    Hazra, Jubin
    Du, Xiaocong
    Liehr, Maximilian
    Li, Zheng
    Beckmann, Karsten
    Joshi, Rajiv, V
    Cady, Nathaniel C.
    Fan, Deliang
    Cao, Yu
    IEEE TRANSACTIONS ON COMPUTERS, 2022, 71 (11) : 2740 - 2752
  • [44] TD-SRAM: Time-Domain-Based In-Memory Computing Macro for Binary Neural Networks
    Song, Jiahao
    Wang, Yuan
    Guo, Minguang
    Ji, Xiang
    Cheng, Kaili
    Hu, Yixuan
    Tang, Xiyuan
    Wang, Runsheng
    Huang, Ru
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2021, 68 (08) : 3377 - 3387
  • [45] Two-objective metaheuristic optimization for floating gate transistor-based CMOS-MEMS inertial sensors
    Granados-Rojas, B.
    Reyes-Barranca, M. A.
    Gonzalez-Navarro, Y. E.
    Abarca-Jimenez, G. S.
    Aleman-Arce, M. A.
    Mendoza-Acevedo, S.
    Flores-Nava, L. M.
    MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2021, 27 (08): : 2889 - 2901
  • [46] Two-objective metaheuristic optimization for floating gate transistor-based CMOS-MEMS inertial sensors
    B. Granados-Rojas
    M. A. Reyes-Barranca
    Y. E. González-Navarro
    G. S. Abarca-Jiménez
    M. A. Alemán-Arce
    S. Mendoza-Acevedo
    L. M. Flores-Nava
    Microsystem Technologies, 2021, 27 : 2889 - 2901
  • [47] Transparent Floating Gate Memory Based on ZnO Thin Film Transistor With Controllable Memory Window
    Zhang, Ning
    Zhao, Wanpeng
    Zhang, Xinyu
    Liu, Yang
    Dong, Shurong
    Luo, Jikui
    Ye, Zhi
    IEEE JOURNAL OF THE ELECTRON DEVICES SOCIETY, 2022, 10 : 275 - 280
  • [48] A Bit-Precision Reconfigurable Digital In-Memory Computing Macro for Energy-Efficient Processing of Artificial Neural Networks
    Kim, Hyunjoon
    Chen, Qian
    Yoo, Taegeun
    Kim, Tony Tae-Hyoung
    Kim, Bongjin
    2019 INTERNATIONAL SOC DESIGN CONFERENCE (ISOCC), 2019, : 166 - 167
  • [49] Scalable and Programmable Neural Network Inference Accelerator Based on In-Memory Computing
    Jia, Hongyang
    Ozatay, Murat
    Tang, Yinqi
    Valavi, Hossein
    Pathak, Rakshit
    Lee, Jinseok
    Verma, Naveen
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2022, 57 (01) : 198 - 211
  • [50] Analog Tuning of Floating-Gate Cells with Sub-Elementary Charge Accuracy for In-Memory Computing Applications
    Tkachev, Yuri
    Lemke, Steven
    Schneider, Louisa
    Festes, Gilles
    Ghazavi, Parviz
    2023 IEEE INTERNATIONAL MEMORY WORKSHOP, IMW, 2023, : 37 - 40