Three-Dimensional Structure of Mach Cones in Monolayer Complex Plasma Crystals

被引:16
|
作者
Couedel, L. [1 ]
Samsonov, D. [2 ]
Durniak, C. [2 ]
Zhdanov, S. [3 ]
Thomas, H. M. [3 ]
Morfill, G. E. [3 ]
Arnas, C. [1 ]
机构
[1] Aix Marseille Univ, CNRS, Lab PIIM, F-13397 Marseille 20, France
[2] Univ Liverpool, Dept Elect Engn & Elect, Liverpool L69 3GJ, Merseyside, England
[3] Max Planck Inst Extraterr Phys, D-85741 Garching, Germany
基金
英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
DUSTY PLASMA; WAVES;
D O I
10.1103/PhysRevLett.109.175001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The structure of Mach cones in a crystalline complex plasma has been studied experimentally using an intensity sensitive imaging, which resolved particle motion in three dimensions. This revealed a previously unknown out-of-plane cone structure, which appeared due to excitation of the vertical wave mode. The complex plasma consisted of micron sized particles forming a monolayer in a plasma sheath of a gas discharge. Fast particles, spontaneously moving under the monolayer, created Mach cones with multiple structures. The in-plane cone structure was due to compressional and shear lattice waves.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Three-dimensional structure of γ-tubulin ring complex
    Dias, DP
    Moritz, M
    Braunfeld, MB
    Zheng, Y
    Agard, DA
    MOLECULAR BIOLOGY OF THE CELL, 1999, 10 : 19A - 19A
  • [22] Three-dimensional structure in a crystallized dusty plasma
    Pieper, JB
    Goree, J
    Quinn, RA
    PHYSICAL REVIEW E, 1996, 54 (05): : 5636 - 5640
  • [23] Interaction of a supersonic particle with a three-dimensional complex plasma
    Zaehringer, E.
    Schwabe, M.
    Zhdanov, S.
    Mohr, D. P.
    Knapek, C. A.
    Huber, P.
    Semenov, I. L.
    Thomas, H. M.
    PHYSICS OF PLASMAS, 2018, 25 (03)
  • [24] The band structures of three-dimensional nonlinear plasma photonic crystals
    Zhang, Hai-Feng
    AIP ADVANCES, 2018, 8 (01):
  • [25] A free boundary problem on three-dimensional cones
    Allen, Mark
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (12) : 8481 - 8507
  • [26] Self-associated three-dimensional cones
    Hildebrand, Roland
    BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2022, 63 (04): : 867 - 906
  • [27] Magnetic Laplacian in Sharp Three-dimensional Cones
    Bonnaillie-Noel, Virginie
    Dauge, Monique
    Popoff, Nicolas
    Raymond, Nicolas
    SPECTRAL THEORY AND MATHEMATICAL PHYSICS, 2016, 254 : 37 - 56
  • [28] Self-associated three-dimensional cones
    Roland Hildebrand
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2022, 63 : 867 - 906
  • [29] Three-dimensional vibrations of truncated hollow cones
    Leissa, Arthur W., 1600, Sage Sci Press, Thousand Oaks, CA, United States (01):
  • [30] Three-Dimensional Monolayer Stress Cytometry
    Serrano, Ricardo
    Aung, Aereas
    Varghese, Shyni
    del Alamo, Juan Carlos
    BIOPHYSICAL JOURNAL, 2017, 112 (03) : 271A - 271A