Weighted Fourier Inequalities in Lebesgue and Lorentz Spaces

被引:4
|
作者
Nursultanov, Erlan [1 ,2 ]
Tikhonov, Sergey [3 ,4 ,5 ]
机构
[1] Gumilyov Eurasian Natl Univ, Kazakh Branch, Lomonosov Moscow State Univ, Munatpasova 7, Astana 010010, Kazakhstan
[2] Inst Math & Math Modelling, Alma Ata 050010, Kazakhstan
[3] Ctr Recerca Matemat, Campus Bellaterra,Edif C, Bellaterra 08193, Barcelona, Spain
[4] ICREA, Pg Lluis Companys 23, Barcelona 08010, Spain
[5] Univ Autonoma Barcelona, Barcelona, Spain
关键词
Fourier transforms; Weights; Lebesgue and Lorentz spaces; Integral operators; Rearrangements; Hardy inequalities; Hormander-type conditions; NORM INEQUALITIES; TRANSFORM; OPERATORS; REARRANGEMENT; THEOREMS;
D O I
10.1007/s00041-020-09764-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we obtain sufficient conditions for the weighted Fourier-type transforms to be bounded in Lebesgue and Lorentz spaces. Two types of results are discussed. First, we review the method based on rearrangement inequalities and the corresponding Hardy's inequalities. Second, we present Hormander-type conditions on weights so that Fourier-type integral operators are bounded in Lebesgue and Lorentz spaces. Both restricted weak- and strong-type results are obtained. In the case of regular weights necessary and sufficient conditions are given.
引用
收藏
页数:29
相关论文
共 50 条
  • [41] Some new Fourier inequalities for unbounded orthogonal systems in Lorentz–Zygmund spaces
    G. Akishev
    D. Lukkassen
    L. E. Persson
    Journal of Inequalities and Applications, 2020
  • [42] On Two-Dimensional Bilinear Inequalities with Rectangular Hardy Operators in Weighted Lebesgue Spaces
    Stepanov, V. D.
    Shambilova, G. E.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2021, 312 (01) : 241 - 248
  • [43] On Two-Dimensional Bilinear Inequalities with Rectangular Hardy Operators in Weighted Lebesgue Spaces
    V. D. Stepanov
    G. E. Shambilova
    Proceedings of the Steklov Institute of Mathematics, 2021, 312 : 241 - 248
  • [44] Mixed Norm Inequalities for Lebesgue Spaces
    Pankaj Jain
    Santosh Kumari
    Monika Singh
    Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2020, 90 : 783 - 787
  • [45] The refined direct and converse inequalities of trigonometric approximation in weighted variable exponent Lebesgue spaces
    Akgun, Ramazan
    Kokilashvili, Vakhtang
    GEORGIAN MATHEMATICAL JOURNAL, 2011, 18 (03) : 399 - 423
  • [46] Extrapolation and weighted norm inequalities between Lebesgue and Lipschitz spaces in the variable exponent context
    Adrian, Cabral
    Gladis, Pradolini
    Wilfredo, Ramos
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 436 (01) : 620 - 636
  • [47] Dyadic Fefferman-Stein inequalities and the equivalence of Haar bases on weighted Lebesgue spaces
    Aimar, Hugo
    Bernardis, Ana
    Nowak, Luis
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2011, 141 : 1 - 21
  • [48] Convolution Inequalities in Lorentz Spaces
    Nursultanov, Erlan
    Tikhonov, Sergey
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2011, 17 (03) : 486 - 505
  • [49] Mixed Norm Inequalities for Lebesgue Spaces
    Jain, Pankaj
    Kumari, Santosh
    Singh, Monika
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 2020, 90 (05) : 783 - 787
  • [50] Norm convolution inequalities in Lebesgue spaces
    Nursultanov, Erlan
    Tikhonov, Sergey
    Tleukhanova, Nazerke
    REVISTA MATEMATICA IBEROAMERICANA, 2018, 34 (02) : 811 - 838