TIME-DELAYED FOLLOW-THE-LEADER MODEL FOR PEDESTRIANS WALKING IN LINE

被引:6
|
作者
Fehrenbach, Jerome [1 ,2 ]
Narski, Jacek [1 ,2 ]
Hua, Jiale [3 ]
Lemercier, Samuel [4 ]
Jelic, Asja [5 ,6 ,7 ]
Appert-Rolland, Cecile [8 ,9 ]
Donikian, Stephane [10 ]
Pettre, Julien [4 ]
Degond, Pierre [11 ]
机构
[1] Univ Toulouse, Inst Math Toulouse, UPS, INSA,UT1,UTM, F-31062 Toulouse, France
[2] CNRS, Inst Math Toulouse UMR 5219, F-31062 Toulouse, France
[3] Donghua Univ, Shanghai 201620, Peoples R China
[4] INRIA Rennes, Bretagne Atlant, F-35042 Rennes, France
[5] UOS Sapienza, Consiglio Nazl Ric, Ist Sistemi Complessi, I-00185 Rome, Italy
[6] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy
[7] Abdus Salam Int Ctr Theoret Phys ICTP, I-34014 Trieste, Italy
[8] Univ Paris 11, Phys Theor Lab, F-91405 Orsay, France
[9] CNRS, LPT, UMR 8627, F-91405 Orsay, France
[10] Golaem SAS, F-35700 Rennes, France
[11] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England
关键词
Motion capture; individual tracking; individual-based model; following behavior; relaxation; jam; FLOW; SIMULATION; DYNAMICS; CONGESTION; NAVIGATION; BEHAVIOR;
D O I
10.3934/nhm.2015.10.579
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We use the results of a pedestrian tracking experiment to identify a follow-the-leader model for pedestrians walking-in-line. We demonstrate the existence of a time-delay between a subject's response and the predecessor's corresponding behavior. This time-delay induces an instability which can be damped out by a suitable relaxation. By comparisons with the experimental data, we show that the model reproduces well the emergence of large-scale structures such as congestions waves. The resulting model can be used either for modeling pedestrian queuing behavior or can be incorporated into bi-dimensional models of pedestrian traffic.
引用
收藏
页码:579 / 608
页数:30
相关论文
共 50 条
  • [21] CONVERGENCE OF ROUGH FOLLOW-THE-LEADER APPROXIMATIONS AND EXISTENCE OF WEAK SOLUTIONS FOR THE ONE-DIMENSIONAL HUGHES MODEL
    Storbugt, Halyard olsen
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2024, 44 (07) : 2029 - 2067
  • [22] Rich dynamics of a time-delayed food chain model
    Maiti, Alakes
    Samanta, G. P.
    JOURNAL OF BIOLOGICAL SYSTEMS, 2006, 14 (03) : 387 - 412
  • [23] Mathematical analysis of a time-delayed model for cocoa yield
    Babasola, Oluwatosin
    Budd, Chris
    IMA JOURNAL OF APPLIED MATHEMATICS, 2023, 88 (05) : 702 - 734
  • [24] Time-delayed model of the unbiased movement of Tetrahymena Pyriformis
    Safar, Orsolya
    Kohidai, Laszlo
    Hegedus, Andrea
    PERIODICA MATHEMATICA HUNGARICA, 2011, 63 (02) : 215 - 225
  • [25] Global dynamics of a time-delayed echinococcosis transmission model
    Junli Liu
    Luju Liu
    Xiaomei Feng
    Jinqian Feng
    Advances in Difference Equations, 2015
  • [26] Entire solutions in a time-delayed and diffusive epidemic model
    Wang, Yuxiao
    Wang, Zhi-Cheng
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (10) : 5033 - 5041
  • [27] Effect of time-delayed interactions on milling: A minimal model
    Costanzo, A.
    van Haeringen, E.
    Hemelrijk, C. K.
    EPL, 2022, 138 (02)
  • [28] Time-delayed model of the unbiased movement of Tetrahymena Pyriformis
    Orsolya Sáfár
    László Kőhidai
    Andrea Hegedűs
    Periodica Mathematica Hungarica, 2011, 63 : 215 - 225
  • [29] Time-delayed SIS epidemic model with population awareness
    Agaba, G. O.
    Kyrychko, Y. N.
    Blyuss, K. B.
    ECOLOGICAL COMPLEXITY, 2017, 31 : 50 - 56
  • [30] Dynamics of a Time-Delayed Lyme Disease Model with Seasonality
    Wang, Xiunan
    Zhao, Xiao-Qiang
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2017, 16 (02): : 853 - 881