Propositional primal logic with disjunction

被引:8
|
作者
Beklemishev, Lev [1 ]
Gurevich, Yuri [2 ]
机构
[1] VA Steklov Math Inst, Moscow 117333, Russia
[2] Microsoft Res, Redmond, WA USA
关键词
DKAL; authorization language; primal logic; cut-elimination; complexity; Kripke semantics; ACCESS-CONTROL; COMPLEXITY;
D O I
10.1093/logcom/exs018
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Gurevich and Neeman introduced Distributed Knowledge Authorization Language (DKAL). The world of DKAL consists of communicating principals computing their own knowledge in their own states. DKAL is based on a new logic of information, the so-called infon logic, and its efficient subsystem called primal logic. In this article, we simplify Kripkean semantics of primal logic and study various extensions of it in search to balance expressivity and efficiency. On the proof-theoretic side we develop cut-free Gentzen-style sequent calculi for the original primal logic and its extensions.
引用
收藏
页码:257 / 282
页数:26
相关论文
共 50 条
  • [41] Relating first-order monadic omega-logic, propositional linear-time temporal logic, propositional generalized definitional reflection logic and propositional infinitary logic
    Kamide, Norihiro
    [J]. JOURNAL OF LOGIC AND COMPUTATION, 2017, 27 (07) : 2271 - 2301
  • [42] Local symmetries in propositional logic
    Arai, NH
    Urquhart, A
    [J]. AUTOMATED REASONING WITH ANALYTIC TABLEAUX AND RELATED METHODS, 2000, 1847 : 40 - 51
  • [43] LEIBNIZ COMPLETE PROPOSITIONAL LOGIC
    CASTANEDA, HN
    [J]. TOPOI-AN INTERNATIONAL REVIEW OF PHILOSOPHY, 1990, 9 (01): : 15 - 28
  • [44] Reasoning processes in propositional logic
    Strannegård C.
    Ulfsbäcker S.
    Hedqvist D.
    Gärling T.
    [J]. Journal of Logic, Language and Information, 2010, 19 (3) : 283 - 314
  • [45] A SURVEY OF PROPOSITIONAL REALIZABILITY LOGIC
    Plisko, Valery
    [J]. BULLETIN OF SYMBOLIC LOGIC, 2009, 15 (01) : 1 - 42
  • [46] PROPOSITIONAL DYNAMIC LOGIC OF FLOWCHARTS
    HAREL, D
    SHERMAN, R
    [J]. INFORMATION AND CONTROL, 1985, 64 (1-3): : 119 - 135
  • [47] ON MODELS FOR PROPOSITIONAL DYNAMIC LOGIC
    KNIJNENBURG, PMW
    VANLEEUWEN, J
    [J]. THEORETICAL COMPUTER SCIENCE, 1991, 91 (02) : 181 - 203
  • [48] Propositional quantification for conditional logic
    Besnard, P
    Guinnebault, JM
    Mayer, E
    [J]. QUALITATIVE AND QUANTITATIVE PRACTICAL REASONING, 1997, 1244 : 183 - 197
  • [49] Logic of Infons: the Propositional Case
    Gurevich, Yuri
    Neeman, Itay
    [J]. ACM TRANSACTIONS ON COMPUTATIONAL LOGIC, 2011, 12 (02)
  • [50] NONCOMPACTNESS IN PROPOSITIONAL MODAL LOGIC
    THOMASON, SK
    [J]. JOURNAL OF SYMBOLIC LOGIC, 1972, 37 (04) : 716 - 720