A modeled Bose system consisting of N particles with two-body interaction confined within volume V under inhomogeneity of the system is investigated using the Feynman path integral approach. The two-body interaction energy is assumed to be dependent on the two-parameter interacting strength a and the correlation length l. The inhomogeneity of the system or the porosity can be represented as density (n) over bar. with interacting strength b and correlation length L. The mean field approximation on the two-body interaction in the Feynman path integrals representation is performed to obtain the onebody interaction. This approximation is equivalent to the Hartree approximation in the many-body electron gas problem. This approximation has shown that the calculation can be reduced to the effective one-body propagator. Performing the variational calculations, we obtain analytical results of the ground state energy which is in agreement with that from Bugoliubov's approach.
机构:
Univ Autonoma Estado Mexico, Fac Ciencias, Inst Literario 100, Mexico City 50000, DF, MexicoUniv Autonoma Estado Mexico, Fac Ciencias, Inst Literario 100, Mexico City 50000, DF, Mexico
Penaloza, Gloria
de Lourdes Najera, Ma.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Autonoma Estado Mexico, Inst Literario 100, Mexico City 50000, DF, MexicoUniv Autonoma Estado Mexico, Fac Ciencias, Inst Literario 100, Mexico City 50000, DF, Mexico
de Lourdes Najera, Ma.
Ongay, Fernando
论文数: 0引用数: 0
h-index: 0
机构:
Univ Autonoma Estado Mexico, Fac Ciencias, Inst Literario 100, Mexico City 50000, DF, MexicoUniv Autonoma Estado Mexico, Fac Ciencias, Inst Literario 100, Mexico City 50000, DF, Mexico
Ongay, Fernando
Agueero, Maximo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Autonoma Estado Mexico, Fac Ciencias, Inst Literario 100, Mexico City 50000, DF, MexicoUniv Autonoma Estado Mexico, Fac Ciencias, Inst Literario 100, Mexico City 50000, DF, Mexico