Decrease in Capacity in Mn-Based/Graphite Commercial Lithium-Ion Batteries

被引:38
|
作者
Kobayashi, Yo [1 ]
Kobayashi, Takeshi [1 ]
Shono, Kumi [1 ]
Ohno, Yasutaka [1 ,2 ]
Mita, Yuichi [1 ]
Miyashiro, Hajime [1 ]
机构
[1] Cent Res Inst Elect Power Ind, Tokyo 2018511, Japan
[2] Elect Power Engn Syst Co Ltd, Tokyo 2018511, Japan
关键词
GRAPHITE/LIFEPO4; CELL; HIGH-POWER; DEGRADATION MECHANISM; POSITIVE-ELECTRODE; AGING MECHANISMS; HIGH-TEMPERATURE; ACTIVE MATERIAL; DISSOLUTION; IMPEDANCE; LIMN2O4;
D O I
10.1149/2.071308jes
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Commercially available lithium-ion batteries (LiMn2O4/LiNi0.8Co0.15Al0.05O2 mixed cathode and graphite anode) are disassembled to determine the reversible capacity of each electrode, the state of charge (SOC) in the operation range, and the lithium content in the graphite anode by inductively coupled plasma optical emission spectroscopy (ICP-OES) after a cycle or storage operation. The origin of the decrease in capacity of the battery is attributed to (i) the decrease in capacity of the cathode active material and (ii) the limited cathode operation range. This leads to a shift to a high SOC of the cathode owing to the irreversible loss of lithium at the anode. We quantitatively explain all degraded battery capacities using the above two factors. The shift in capacity is obtained by discharging from the constant disassembly conditions at a constant open-circuit voltage (OCV), which cannot be obtained by electrochemical analysis of the anode. The determined shift in capacity has a strong correlation with the amount of irreversibly accumulated lithium at the anode determined by ICP-OES. (C) 2013 The Electrochemical Society. All rights reserved.
引用
收藏
页码:A1181 / A1186
页数:6
相关论文
共 50 条
  • [41] Evaluation of graphite materials as anodes for lithium-ion batteries
    Cao, F
    Barsukov, IV
    Bang, HJ
    Zaleski, P
    Prakash, J
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2000, 147 (10) : 3579 - 3583
  • [42] Graphite Recycling from Spent Lithium-Ion Batteries
    Rothermel, Sergej
    Evertz, Marco
    Kasnatscheew, Johannes
    Qi, Xin
    Gruetzke, Martin
    Winter, Martin
    Nowak, Sascha
    CHEMSUSCHEM, 2016, 9 (24) : 3473 - 3484
  • [43] Modification of Graphite Anode Materials for Lithium-Ion Batteries
    Lu J.
    Sui X.-M.
    Hao S.-Z.
    Wang H.-H.
    Surface Technology, 2022, 51 (08): : 135 - 145
  • [44] Recycled graphite for more sustainable lithium-ion batteries
    Olutogun, Mayokun
    Vanderbruggen, Anna
    Frey, Christoph
    Rudolph, Martin
    Bresser, Dominic
    Passerini, Stefano
    CARBON ENERGY, 2024, 6 (05)
  • [45] Coke vs graphite as anodes for lithium-ion batteries
    Shi, H
    JOURNAL OF POWER SOURCES, 1998, 75 (01) : 64 - 72
  • [46] Polyacrylate Modifier for Graphite Anode of Lithium-Ion Batteries
    Komaba, S.
    Okushi, K.
    Ozeki, T.
    Yui, H.
    Katayama, Y.
    Miura, T.
    Saito, T.
    Groult, H.
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 2009, 12 (05) : A107 - A110
  • [47] Composite of graphite/phosphorus as anode for lithium-ion batteries
    Bai, Aojun
    Wang, Li
    Li, Yang
    He, Xiangming
    Wang, Jixian
    Wang, Jianlong
    JOURNAL OF POWER SOURCES, 2015, 289 : 100 - 104
  • [48] Hydrocolloids as binders for graphite anodes of lithium-ion batteries
    Cuesta, Nuria
    Ramos, Alberto
    Camean, Ignacio
    Antuna, Cristina
    Garcia, Ana B.
    ELECTROCHIMICA ACTA, 2015, 155 : 140 - 147
  • [49] Elements gradient doping in Mn-based Li-rich layered oxides for long-life lithium-ion batteries
    Wang, Yinzhong
    Liu, Shiqi
    Guo, Xianwei
    Wang, Boya
    Zhang, Qinghua
    Li, Yuqiang
    Wang, Yulong
    Wang, Guoqing
    Gu, Lin
    Yu, Haijun
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2025, 207 : 266 - 273
  • [50] Review on comprehending and enhancing the initial coulombic efficiency of Li-rich Mn-based cathode materials in lithium-ion batteries
    Wang, Bo
    Cui, Jing
    Li, Zhaojin
    Wang, Huan
    Zhang, Di
    Wang, Qiujun
    Sun, Huilan
    Wu, Yimin A. A.
    MATERIALS CHEMISTRY FRONTIERS, 2023, 7 (13) : 2570 - 2594