A Front-End Amplifier With Current Compensation Feedback Input Impedance Booster for Neural Signal Applications

被引:7
|
作者
Zhou, Zhijun [1 ,2 ]
机构
[1] Southeast Univ, Sch Informat & Engn, Inst RF & OE ICs, Nanjing 210096, Peoples R China
[2] Minist Educ, Engn Res Ctr RF ICs & RF Syst, Nanjing 210096, Peoples R China
基金
中国国家自然科学基金;
关键词
Analog integrated circuits; biomedical signal processing; CMOS integrated circuits; biomedical monitoring; input impedance booster; preamplifiers; DESIGN; NOISE;
D O I
10.1109/ACCESS.2020.3026178
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In integrated circuit form, the front-end amplifier (FEA) determines the fidelity of the biosignal detection, signal-to-noise ratio, power consumption and detector size for the future multi-channel neural signal recording systems and applications. Especially for the high-density implantable applications, a higher input impedance reduces the signal attenuation (with respect to the high-impedance miniature electrodes), and lowers the current into the tissue (to avoid the overheating damage). In this paper, an input impedance booster with current compensation feedback technique is proposed, it neutralizes any currents generated at input of FEA without affecting the gain. It substantially yields a high input impedance across process and device mismatches. The proposed front-end circuit is implemented on a 0.18 mu m CMOS process, it achieves an input impedance of approximately 60 G Omega, and CMRR of 61 dB with 57 dB PSRR. The input-referred noise is approximately 5.6 mu v/root Hz while consuming 7.6 mu W in 0. 025mm(2)chip area.
引用
收藏
页码:178055 / 178062
页数:8
相关论文
共 50 条
  • [31] A High Dynamic Range Feedback Compensation Front-End for Unlimited Sampling ASDM ADC
    Dan, Binqiang
    Qian, Hui
    Wang, Zhongfeng
    2024 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, ISCAS 2024, 2024,
  • [32] An Analog Front-end Amplifier with Seamless Discrete Time-gain Compensation for Ultrasound Scanner
    Son M.-H.
    Um J.-Y.
    Journal of Semiconductor Technology and Science, 2023, 23 (06) : 389 - 395
  • [33] Transimpedance Amplifier with Automatic Bandwidth Compensation Technique for Large Window Optical Front-End Receiver
    Elias, N. I. M.
    Idrus, S. M.
    Ramli, A.
    2013 IEEE 4TH INTERNATIONAL CONFERENCE ON PHOTONICS (ICP), 2013, : 299 - 301
  • [34] A biasing based current mode analog front-end for biomedical applications
    Krishnamoorthy, Raja
    Kavitha, E.
    Geo, V. Beslin
    Radhika, K. S. R.
    Bharatiraja, C.
    MATERIALS TODAY-PROCEEDINGS, 2021, 45 : 3113 - 3119
  • [35] Implantable analog front-end with high PSRR and CMRR for neural signal acquisition
    Wu, Zhao-Hui
    Xie, Yu-Zhi
    Zhao, Ming-Jian
    Li, Bin
    Huanan Ligong Daxue Xuebao/Journal of South China University of Technology (Natural Science), 2015, 43 (01): : 15 - 20
  • [36] Fully-Differential Multichannel Integrated Neural Signal Recording Front-End
    Xiaoran Li
    Shun'an Zhong
    Haidong Yang
    Libin Yao
    JournalofBeijingInstituteofTechnology, 2017, 26 (02) : 228 - 234
  • [37] Analog Front-End Amplifier for ECG Applications with Feed-Forward EOS Cancellation
    Tu, Chih-Chan
    Lin, Tsung-Hsien
    2014 INTERNATIONAL SYMPOSIUM ON VLSI DESIGN, AUTOMATION AND TEST (VLSI-DAT), 2014,
  • [38] Design considerations of low power mixed signal front-end for voice applications
    Strle, D
    INFORMACIJE MIDEM-JOURNAL OF MICROELECTRONICS ELECTRONIC COMPONENTS AND MATERIALS, 1999, 29 (03): : 129 - 135
  • [39] A mixed-signal BiCMOS front-end signal processor for high-temperature applications
    Vermesan, Ovidiu
    Blystad, Lars-Cyril Julin
    Bahr, Roy
    Hjelstuen, Magnus
    Beneteau, Lionel
    Froelich, Benoit
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2006, 41 (07) : 1638 - 1647
  • [40] A new optical front-end compensation technique for suppression of spurious signal in photoreflectance spectroscopy using an antiphase signal
    Li, Q.
    Tan, H. H.
    Jagadish, C.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2010, 81 (04):