A note on the Ostrovsky equation in weighted Sobolev spaces

被引:5
|
作者
Bustamante, Eddye [1 ]
Jimenez Urrea, Jose [1 ]
Mejia, Jorge [1 ]
机构
[1] Univ Nacl Colombia, Dept Matemat, Medellin 3840, Colombia
关键词
Ostrovsky equation; Local well-posedness; Weighted Sobolev spaces; BENJAMIN-ONO-EQUATION; CAUCHY-PROBLEM; WELL-POSEDNESS; KDV EQUATION; REGULARITY;
D O I
10.1016/j.jmaa.2017.12.025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we consider the initial value problem (IVP) associated to the Ostrovsky equations u(t) + partial derivative(3)(x)u +/- partial derivative(-1)(x)u + u partial derivative(x)u = 0, x is an element of R, t is an element of R,} u(x,0) = u(0)(x). We study the well-posedness of the IVP in the weighted Sobolev spaces Z(s,s/2) := {f is an element of H-s (R) : partial derivative(-1)(x) f is an element of L-2(R)}boolean AND L-2(vertical bar x vertical bar(s)dx), with 3/4 < s <= 1. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:1004 / 1018
页数:15
相关论文
共 50 条