Methods for data-driven multiscale model discovery for materials

被引:42
|
作者
Brunton, Steven L. [1 ]
Kutz, J. Nathan [2 ]
机构
[1] Univ Washington, Mech Engn, Seattle, WA 98195 USA
[2] Univ Washington, Appl Math, Seattle, WA 98195 USA
来源
JOURNAL OF PHYSICS-MATERIALS | 2019年 / 2卷 / 04期
关键词
model discovery; machine learning; sparse regression; metamaterials; SPARSE IDENTIFICATION; VARIATIONAL APPROACH; SPECTRAL PROPERTIES; DECOMPOSITION; DESIGN; ALGORITHMS; SYSTEMS; VALIDATION; PROJECTION; REDUCTION;
D O I
10.1088/2515-7639/ab291e
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Despite recent achievements in the design and manufacture of advanced materials, the contributions from first-principles modeling and simulation have remained limited, especially in regards to characterizing how macroscopic properties depend on the heterogeneous microstructure. An improved ability to model and understand these multiscale and anisotropic effects will be critical in designing future materials, especially given rapid improvements in the enabling technologies of additive manufacturing and active metamaterials. In this review, we discuss recent progress in the data-driven modeling of dynamical systems using machine learning and sparse optimization to generate parsimonious macroscopic models that are generalizable and interpretable. Such improvements in model discovery will facilitate the design and characterization of advanced materials by improving efforts in (1) molecular dynamics, (2) obtaining macroscopic constitutive equations, and (3) optimization and control of metamaterials.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Computational Data-Driven Materials Discovery
    Mannodi-Kanakkithodi, Arun
    Chan, Maria K. Y.
    [J]. TRENDS IN CHEMISTRY, 2021, 3 (02): : 79 - 82
  • [2] Data-driven methods for discovery of next-generation electrostrictive materials
    Trujillo, Dennis P. P.
    Gurung, Ashok
    Yu, Jiacheng
    Nayak, Sanjeev K. K.
    Alpay, S. Pamir
    Janolin, Pierre-Eymeric
    [J]. NPJ COMPUTATIONAL MATERIALS, 2022, 8 (01)
  • [3] Data-driven methods for discovery of next-generation electrostrictive materials
    Dennis P. Trujillo
    Ashok Gurung
    Jiacheng Yu
    Sanjeev K. Nayak
    S. Pamir Alpay
    Pierre-Eymeric Janolin
    [J]. npj Computational Materials, 8
  • [4] The materials data ecosystem: Materials data science and its role in data-driven materials discovery
    尹海清
    姜雪
    刘国权
    Sharon Elder
    徐斌
    郑清军
    曲选辉
    [J]. Chinese Physics B, 2018, 27 (11) : 124 - 129
  • [5] The materials data ecosystem: Materials data science and its role in data-driven materials discovery
    Yin, Hai-Qing
    Jiang, Xue
    Liu, Guo-Quan
    Elder, Sharon
    Xu, Bin
    Zheng, Qing-Jun
    Qu, Xuan-Hui
    [J]. CHINESE PHYSICS B, 2018, 27 (11)
  • [6] A data-driven multiscale model for reactive wetting simulations
    Ray, Jaideep
    Horner, Jeffrey S.
    Winter, Ian
    Kemmenoe, David J.
    Arata, Edward R.
    Chandross, Michael
    Roberts, Scott A.
    Grillet, Anne M.
    [J]. COMPUTERS & FLUIDS, 2024, 276
  • [7] Data-Driven Discovery of Robust Materials for Photocatalytic Energy Conversion
    Singh, Arunima K.
    Gorelik, Rachel
    Biswas, Tathagata
    [J]. ANNUAL REVIEW OF CONDENSED MATTER PHYSICS, 2023, 14 : 237 - 259
  • [8] A Design-to-Device Pipeline for Data-Driven Materials Discovery
    Cole, Jacqueline M.
    [J]. ACCOUNTS OF CHEMICAL RESEARCH, 2020, 53 (03) : 599 - 610
  • [9] Accelerating materials discovery with data-driven atomistic computational tools
    Wolverton, Christopher
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [10] Linking Machine Learning with Multiscale Numerics: Data-Driven Discovery of Homogenized Equations
    Hassan Arbabi
    Judith E. Bunder
    Giovanni Samaey
    Anthony J. Roberts
    Ioannis G. Kevrekidis
    [J]. JOM, 2020, 72 : 4444 - 4457