Bayesian estimation of state-space models applied to deconvolution of Bernoulli-Gaussian processes

被引:33
|
作者
Doucet, A
Duvaut, P
机构
[1] CEN Saclay LETI/DEIN/SPE, Bâtiment 451
[2] ETIS - ENSEA Groupe Signal
关键词
Bayesian estimation; Markov chain Monte Carlo methods; Gibbs sampler; state-space models; Bernoulli-Gaussian processes; deconvolution;
D O I
10.1016/S0165-1684(96)00192-2
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this article, we use stochastic simulation techniques to estimate the a posteriori density of the hidden-state process and hyperparameters of conditionally linear Gaussian state-space models. The estimation method relies on Markov chains Monte Carlo methods and more especially the Gibbs sampler. We apply this algorithm to non-blind and blind Bayesian deconvolution of Bernoulli-Gaussian processes. Convergence of the algorithm is established. In simulations, very satisfactory results are obtained. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:147 / 161
页数:15
相关论文
共 50 条
  • [41] Sequential Estimation of Gaussian Process-Based Deep State-Space Models
    Liu, Yuhao
    Ajirak, Marzieh
    Djuric, Petar M.
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2023, 71 : 2968 - 2980
  • [42] State-space estimation with uncertain models
    Sayed, AH
    Subramanian, A
    [J]. TOTAL LEAST SQUARES AND ERRORS-IN-VARIABLES MODELING: ANALYSIS, ALGORITHMS AND APPLICATIONS, 2002, : 191 - 202
  • [43] Deconvolution of marine seismic signal using higher order statistics and Bernoulli-Gaussian model
    Boujida, M
    Boucher, JM
    Marsset, B
    Lericolais, G
    Meunier, J
    [J]. OCEANS '96 MTS/IEEE, CONFERENCE PROCEEDINGS, VOLS 1-3 / SUPPLEMENTARY PROCEEDINGS: COASTAL OCEAN - PROSPECTS FOR THE 21ST CENTURY, 1996, : 1441 - 1446
  • [44] Wavelet-based Bayesian denoising using Bernoulli-Gaussian mixture model
    Eom, IK
    Kim, YS
    [J]. Visual Communications and Image Processing 2005, Pts 1-4, 2005, 5960 : 316 - 324
  • [45] On the latent state estimation of nonlinear population dynamics using Bayesian and non-Bayesian state-space models
    Wang, Guiming
    [J]. ECOLOGICAL MODELLING, 2007, 200 (3-4) : 521 - 528
  • [46] Estimation in continuous state-space branching processes
    Kale, M
    Deshmukh, SR
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2001, 92 (1-2) : 111 - 119
  • [47] Planar Array Diagnosis Based on Bayesian Learning With a Bernoulli-Gaussian Prior Model
    Wang, Fang-Fang
    Xu, Yu-Hui
    Liu, Qing Huo
    [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2022, 70 (07) : 6106 - 6110
  • [48] Adaptive multichannel blind deconvolution using state-space models
    Cichocki, A
    Zhang, LQ
    [J]. PROCEEDINGS OF THE IEEE SIGNAL PROCESSING WORKSHOP ON HIGHER-ORDER STATISTICS, 1999, : 296 - 299
  • [49] Estimation of Granger Causality of State-Space Models using a Clustering with Gaussian Mixture Model
    Plub-in, Nattaporn
    Songsiri, Jitkomut
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC), 2019, : 3853 - 3858
  • [50] Online Bayesian Tire-Friction Learning by Gaussian-Process State-Space Models
    Berntorp, Karl
    [J]. IFAC PAPERSONLINE, 2020, 53 (02): : 13939 - 13944