IMMPDA Vehicle Tracking System using Asynchronous Sensor Fusion of Radar and Vision

被引:0
|
作者
Liu, Feng [1 ]
Sparbert, Jan [1 ]
Stiller, Christoph [2 ]
机构
[1] Robert Bosch GmbH, Driver Assistance Dept, D-71229 Leonberg, Germany
[2] Univ Karlsruhe, Inst Measurement & Control Theory, D-76131 Karlsruhe, Germany
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper focuses on recognition and tracking of maneuvering vehicles in dense traffic situations. We present an asynchronous multi obstacle multi sensor tracking method that fuses information from radar and monocular vision. A low level fusion method is integrated into the framework of an IMMPDA Kalman filter. Real world experiments demonstrate that the system combines the complementary strengths of the employed sensors.
引用
收藏
页码:217 / +
页数:2
相关论文
共 50 条
  • [21] Distributed Fusion with PHD Filter for Multi-target Tracking in Asynchronous Radar System
    Li, Guchong
    Yi, Wei
    Jiang, Meng
    Kong, Lingjiang
    [J]. 2017 IEEE RADAR CONFERENCE (RADARCONF), 2017, : 1434 - 1439
  • [22] Sensor Data Fusion Using Fuzzy Control for VOR-Based Vision Tracking System
    Kwon, Hyun-il
    Park, Jaehong
    Hwang, Wonsang
    Kim, Jong-hyeon
    Lee, Chang-hun
    Anjum, M. Latif
    Kim, Kwang-soo
    Cho, Dong-il
    [J]. IEEE/RSJ 2010 INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2010), 2010,
  • [23] Sensor Tracking System using Radar and Object Detection
    Melgoza, Cesar Martinez
    George, Kiran
    Miho, Jake
    [J]. 2023 IEEE 13TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE, CCWC, 2023, : 238 - 241
  • [24] Asynchronous Multi-Radar Tracking Fusion with Converted Measurements
    Zhang, Donglin
    Duan, Zhansheng
    Hanebeck, Uwe D.
    [J]. 2022 25TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION 2022), 2022,
  • [25] Emergent Vehicle Tracking System Using IR Sensor
    Managuli, Manjunath
    Deshpande, Abhaya
    Ayatti, Sudha H.
    [J]. 2017 INTERNATIONAL CONFERENCE ON ELECTRICAL, ELECTRONICS, COMMUNICATION, COMPUTER, AND OPTIMIZATION TECHNIQUES (ICEECCOT), 2017, : 71 - 74
  • [26] Vehicle tracking using a generic multi-sensor fusion approach
    Robotics Centre, Mines ParisTech, JRU LARA, 60 Boulevard Saint-Michel, 75272 Paris Cedex 06, France
    不详
    [J]. Int. J. Veh. Inf. Commun. Syst., 2009, 1-2 (99-121):
  • [27] On-Road Vehicle Detection and Tracking Using MMW Radar and Monovision Fusion
    Wang, Xiao
    Xu, Linhai
    Sun, Hongbin
    Xin, Jingmin
    Zheng, Nanning
    [J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2016, 17 (07) : 2075 - 2084
  • [28] High Performance Vision Tracking System for Mobile Robot Using Sensor Data Fusion with Kalman Filter
    Park, Jaehong
    Hwang, Wonsang
    Kwon, Hyun-il
    Kim, Jong-hyeon
    Lee, Chang-hun
    Anjum, M. Latif
    Kim, Kwang-soo
    Cho, Dong-il
    [J]. IEEE/RSJ 2010 INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2010), 2010,
  • [29] Spatial Attention Fusion for Obstacle Detection Using MmWave Radar and Vision Sensor
    Chang, Shuo
    Zhang, Yifan
    Zhang, Fan
    Zhao, Xiaotong
    Huang, Sai
    Feng, Zhiyong
    Wei, Zhiqing
    [J]. SENSORS, 2020, 20 (04)
  • [30] Vehicle Tracking System for Intelligent and Connected Vehicle Based on Radar and V2V Fusion
    Tian, Zhen
    Cai, Yufeng
    Huang, Shuai
    Hu, Fangchao
    Li, Yinguo
    Cen, Ming
    [J]. PROCEEDINGS OF THE 30TH CHINESE CONTROL AND DECISION CONFERENCE (2018 CCDC), 2018, : 6598 - 6603