Motor rehabilitation for hemiparetic stroke patients using a brain-computer interface method

被引:10
|
作者
Cho, Woosang [1 ]
Heilinger, Alexander [1 ]
Ortner, Rupert [1 ]
Murovec, Nensi [1 ]
Xu, Ren [2 ]
Swift, James [3 ]
Zehetner, Manuela [1 ]
Schobesberger, Stefan [1 ]
Edlinger, Guenter [2 ]
Guger, Christoph [1 ,2 ]
机构
[1] Gtec Med Engn GmbH, Sierningstr 14, A-4521 Schiedlberg, Austria
[2] Guger Technol OG, Herbersteinstr 60, A-8020 Graz, Austria
[3] Gtec Neurotechnol USA, 5 Univ Pl,Rm D201, Rensselaer, NY 12144 USA
关键词
brain-computer interfaces; motor imagery; stroke rehabilitation; functional electrical stimulation; avatar; SPATIAL FILTERS; SCALE;
D O I
10.1109/SMC.2018.00178
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Brain-computer interfaces (BCIs) have been employed in rehabilitation training for post-stroke patients. In this study, we present the results of the intervention based on BCI triggered functional electrical stimulation (FES) and avatar mirroring. Seven chronic stroke patients participated in 25 sessions of training over 13 weeks. Seven assessments were conducted to observe any behavioral changes before and after the intervention. The primary outcome measure, i.e. the Fugl-Meyer Assessment of the Upper Extremity (FMA-UE), increased significantly by 6.4 points (p=0.048), which is above the minimal clinically important difference (MCID). The Modified Ashworth Scale (MAS), one of the secondary outcome measures, reduced significantly in both the wrist and the finger (p=0.046 and p=0.047 respectively). This study demonstrated motor function improvement and spasticity reduction in chronic stroke patients (n=7) after BCI triggered FES and avatar mirroring. One limitation of this study is that the small sample size may not adequately represent the diverse stroke population. Further work should include a randomized controlled trial to investigate the effectiveness of BCI triggered FES compared to conventional therapies.
引用
收藏
页码:1001 / 1005
页数:5
相关论文
共 50 条
  • [31] MOTOR REHABILITATION IN CHRONIC STROKE USING NEAR-INFRARED SPECTROSCOPY-BASED BRAIN-COMPUTER INTERFACE: A CASE STUDY
    Lyukmanov, R.
    Isaev, M.
    Mokienko, O.
    Bobrov, P.
    Ikonnikova, E.
    Cherkasova, A.
    Kirichenko, O.
    Yatsko, K.
    Suponeva, N.
    INTERNATIONAL JOURNAL OF STROKE, 2023, 18 (03) : 269 - 269
  • [32] Dose-response relationships using brain-computer interface technology impact stroke rehabilitation
    Young, Brittany M.
    Nigogosyan, Zack
    Walton, Leo M.
    Remsik, Alexander
    Song, Jie
    Nair, Veena A.
    Tyler, Mitchell E.
    Edwards, Dorothy F.
    Caldera, Kristin
    Sattin, Justin A.
    Williams, Justin C.
    Prabhakaran, Vivek
    FRONTIERS IN HUMAN NEUROSCIENCE, 2015, 9
  • [33] Motor imagery brain-computer interface rehabilitation system enhances upper limb performance and improves brain activity in stroke patients: A clinical study
    Liao, Wenzhe
    Li, Jiahao
    Zhang, Xuesong
    Li, Chen
    FRONTIERS IN HUMAN NEUROSCIENCE, 2023, 17
  • [34] Brain Functional Changes in Stroke Following Rehabilitation Using Brain-Computer Interface-Assisted Motor Imagery With and Without tDCS: A Pilot Study
    Hu, Mengjiao
    Cheng, Hsiao-Ju
    Ji, Fang
    Chong, Joanna Su Xian
    Lu, Zhongkang
    Huang, Weimin
    Ang, Kai Keng
    Phua, Kok Soon
    Chuang, Kai-Hsiang
    Jiang, Xudong
    Chew, Effie
    Guan, Cuntai
    Zhou, Juan Helen
    FRONTIERS IN HUMAN NEUROSCIENCE, 2021, 15
  • [35] A Randomized Controlled Trial of EEG-Based Motor Imagery Brain-Computer Interface Robotic Rehabilitation for Stroke
    Ang, Kai Keng
    Chua, Karen Sui Geok
    Phua, Kok Soon
    Wang, Chuanchu
    Chin, Zheng Yang
    Kuah, Christopher Wee Keong
    Low, Wilson
    Guan, Cuntai
    CLINICAL EEG AND NEUROSCIENCE, 2015, 46 (04) : 310 - 320
  • [36] Neurophysiological substrates of stroke patients with motor imagery-based brain-computer interface training
    Li, Mingfen
    Liu, Ye
    Wu, Yi
    Liu, Sirao
    Jia, Jie
    Zhang, Liqing
    INTERNATIONAL JOURNAL OF NEUROSCIENCE, 2014, 124 (06) : 403 - 415
  • [37] EEG-based Brain-Computer Interface to support post-stroke motor rehabilitation of the upper limb
    Cincotti, F.
    Pichiorri, F.
    Arico, P.
    Aloise, F.
    Leotta, F.
    Fallani, F. de Vico
    Millan, J. del R.
    Molinari, M.
    Mattia, D.
    2012 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2012, : 4112 - 4115
  • [38] Brain-Computer Interface-Based Soft Robotic Glove Rehabilitation for Stroke
    Cheng, Nicholas
    Phua, Kok Soon
    Lai, Hwa Sen
    Tam, Pui Kit
    Tang, Ka Yin
    Cheng, Kai Kei
    Yeow, Raye Chen-Hua
    Ang, Kai Keng
    Guan, Cuntai
    Lim, Jeong Hoon
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2020, 67 (12) : 3339 - 3351
  • [39] Hybrid Brain-Computer Interface Controlled Soft Robotic Glove for Stroke Rehabilitation
    Zhang, Ruoqing
    Feng, Shanshan
    Hu, Nan
    Low, Shunkang
    Li, Meng
    Chen, Xiaogang
    Cui, Hongyan
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2024, 28 (07) : 4194 - 4203
  • [40] Brain-computer interface robotics for hand rehabilitation after stroke: a systematic review
    Baniqued, Paul Dominick E.
    Stanyer, Emily C.
    Awais, Muhammad
    Alazmani, Ali
    Jackson, Andrew E.
    Mon-Williams, Mark A.
    Mushtaq, Faisal
    Holt, Raymond J.
    JOURNAL OF NEUROENGINEERING AND REHABILITATION, 2021, 18 (01)