Parameter Optimization of PID Controller Based on an Improved Particle Swarm Optimization for the Induction Motor

被引:0
|
作者
Shi, Xia-bo [1 ]
Lin, Wei-xing [1 ]
机构
[1] Ningbo Univ, Fac Informat Sci & Technol, Ningbo 315211, Zhejiang, Peoples R China
来源
MECHANICAL AND ELECTRONICS ENGINEERING III, PTS 1-5 | 2012年 / 130-134卷
关键词
Improved Particle Swarm Optimization; Induction motor; PID controller; Computer simulation;
D O I
10.4028/www.scientific.net/AMM.130-134.1938
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper presents a new approach of PID parameter optimization for the induction motor speed system by using an improved particle swarm optimization (IPSO). The induction motor speed is changed by the stator voltage controlled with PID controller. The performance of PID controller based on IPSO is compared to Linearly Decreasing Inertia Weight (LIWPSO). Simulation results demonstrate that the IPSO algorithm has better dynamic performance, higher accuracy and faster convergence and good performance for the PID controller.
引用
收藏
页码:1938 / 1942
页数:5
相关论文
共 50 条
  • [21] PID Controller Design for MIMO Processes Using Improved Particle Swarm Optimization
    Chang, Wei-Der
    Chen, Chih-Yung
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2014, 33 (05) : 1473 - 1490
  • [22] PID Controller Design for MIMO Processes Using Improved Particle Swarm Optimization
    Wei-Der Chang
    Chih-Yung Chen
    Circuits, Systems, and Signal Processing, 2014, 33 : 1473 - 1490
  • [23] Parameter identification of a cage induction motor using particle swarm optimization
    Nikranajbar, A.
    Ebrahimi, M. K.
    Wood, A. S.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART I-JOURNAL OF SYSTEMS AND CONTROL ENGINEERING, 2010, 224 (I5) : 479 - 491
  • [24] Particle Swarm Optimization for Multivariable PID Controller Tuning
    Selamat, N. A.
    Wahab, N. A.
    Sahlan, S.
    2013 IEEE 9TH INTERNATIONAL COLLOQUIUM ON SIGNAL PROCESSING AND ITS APPLICATIONS (CSPA), 2013, : 170 - 175
  • [25] Hybrid Microgrid based on PID Controller with the Modified Particle Swarm Optimization
    Rojin, R. K.
    Linda, M. Mary
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2022, 33 (01): : 245 - 258
  • [26] Robust PID controller tuning based on the constrained particle swarm optimization
    Kim, Tae-Hyoung
    Maruta, Ichiro
    Sugie, Toshiharu
    AUTOMATICA, 2008, 44 (04) : 1104 - 1110
  • [27] Increment PID controller based on Immunity Particle Swarm Optimization Algorithm
    WeiZhng
    KunWang
    Shouzhi-Li
    2006 IMACS: MULTICONFERENCE ON COMPUTATIONAL ENGINEERING IN SYSTEMS APPLICATIONS, VOLS 1 AND 2, 2006, : 1947 - +
  • [28] Increment PID controller based on immunity particle swarm optimization algorithm
    School of xi'an University of Arts and Science, Analysis of EMC in Electric Power and Electron Device, City of Xi'an in Shanxi Province, China
    1600, 1947-1951 (2006):
  • [29] Observing the effect of Particle Swarm Optimization Algorithm Based PID Controller
    Maitra, Akash
    Senapati, Arnob
    Chatterjee, Souvik
    Bhattacharya, Bodhisatwa
    Kashyap, Abhishek Kumar
    Mondal, Binanda Kishore
    Ghosh, Sudipta
    JOURNAL OF MECHANICS OF CONTINUA AND MATHEMATICAL SCIENCES, 2018, 13 (02): : 126 - 137
  • [30] Knowledge-based Particle Swarm Optimization for PID Controller Tuning
    Chen, Junfeng
    Omidvar, Mohammad Nabi
    Azad, Morteza
    Yao, Xin
    2017 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2017, : 1819 - 1826