Tensor Completion for Radio Map Reconstruction using Low Rank and Smoothness

被引:18
|
作者
Schaeufele, Daniel [1 ]
Cavalcante, Renato L. G. [1 ,2 ]
Stanczak, Slawomir [1 ,2 ]
机构
[1] Fraunhofer Heinrich Hertz Inst, Berlin, Germany
[2] Tech Univ Berlin, Berlin, Germany
关键词
tensor completion; convex optimization; radio map; coverage map; PREDICTION;
D O I
10.1109/spawc.2019.8815495
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Radio maps are important enablers for many applications in wireless networks, ranging from network planning and optimization to fingerprint based localization. Sampling the complete map is prohibitively expensive in practice, so methods for reconstructing the complete map from a subset of measurements are increasingly gaining attention in the literature. In this paper, we propose two algorithms for this purpose, which build on existing approaches that aim at minimizing the tensor rank while additionally enforcing smoothness of the radio map. Experimental results with synthetic measurements derived via ray tracing show that our algorithms outperform state of the art techniques.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] A Weighted Tensor Factorization Method for Low-rank Tensor Completion
    Cheng, Miaomiao
    Jing, Liping
    Ng, Michael K.
    [J]. 2019 IEEE FIFTH INTERNATIONAL CONFERENCE ON MULTIMEDIA BIG DATA (BIGMM 2019), 2019, : 30 - 38
  • [22] Low-rank tensor completion by Riemannian optimization
    Daniel Kressner
    Michael Steinlechner
    Bart Vandereycken
    [J]. BIT Numerical Mathematics, 2014, 54 : 447 - 468
  • [23] Robust Low-Rank Tensor Ring Completion
    Huang, Huyan
    Liu, Yipeng
    Long, Zhen
    Zhu, Ce
    [J]. IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2020, 6 : 1117 - 1126
  • [24] Low rank tensor completion for multiway visual data
    Long, Zhen
    Liu, Yipeng
    Chen, Longxi
    Zhu, Ce
    [J]. SIGNAL PROCESSING, 2019, 155 : 301 - 316
  • [25] CROSS: EFFICIENT LOW-RANK TENSOR COMPLETION
    Zhang, Anru
    [J]. ANNALS OF STATISTICS, 2019, 47 (02): : 936 - 964
  • [26] Low-rank tensor completion by Riemannian optimization
    Kressner, Daniel
    Steinlechner, Michael
    Vandereycken, Bart
    [J]. BIT NUMERICAL MATHEMATICS, 2014, 54 (02) : 447 - 468
  • [27] A dual framework for low-rank tensor completion
    Nimishakavi, Madhav
    Jawanpuria, Pratik
    Mishra, Bamdev
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [28] ROBUST LOW-TUBAL-RANK TENSOR COMPLETION
    Wang, Andong
    Song, Xulin
    Wu, Xiyin
    Lai, Zhihui
    Jin, Zhong
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 3432 - 3436
  • [29] Noisy low-tubal-rank tensor completion
    Wang, Andong
    Lai, Zhihui
    Jin, Zhong
    [J]. NEUROCOMPUTING, 2019, 330 : 267 - 279
  • [30] Optimal Low-Rank Tensor Tree Completion
    Li, Zihan
    Zhu, Ce
    Long, Zhen
    Liu, Yipeng
    [J]. 2023 IEEE 25TH INTERNATIONAL WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING, MMSP, 2023,