Some properties on isoclinism of Lie algebras and covers

被引:18
|
作者
Salemkar, Ali Reza [1 ]
Bigdely, Hadi [1 ]
Alamian, Vahid [2 ]
机构
[1] Shaheed Beheshti Univ, Fac Math Sci, Tehran, Iran
[2] Azad Univ Mashhad, Dept Math, Mashhad, Iran
基金
美国国家科学基金会;
关键词
isoclinism; Schur multiplier; Hopfian Lie algebra; Schur pair property;
D O I
10.1142/S0219498808002965
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we give some equivalent conditions for Lie algebras to be isoclinic. In particular, it is shown that if two Lie algebras L and K are isoclinic then L can be constructed from K and vice versa using the operations of forming direct sums, taking subalgebras, and factoring Lie algebras. We also study connection between isoclinic and the Schur multiplier of Lie algebras. In addition, we deal with some properties of covers of Lie algebras whose Schur multipliers are finite dimensional and prove that all covers of any abelian Lie algebra have Hopfian property. Finally, we indicate that if a Lie algebra L belongs to some certain classes of Lie algebras then so does its cover.
引用
收藏
页码:507 / 516
页数:10
相关论文
共 50 条
  • [11] SOME PROPERTIES OF m-ISOCLINISM IN FILIPPOV ALGEBRAS
    Doosti, Aslan
    Saeedi, Farshid
    Tajnia, Soodabeh
    ADVANCES AND APPLICATIONS IN MATHEMATICAL SCIENCES, 2018, 17 (11): : 723 - 730
  • [12] ON THE ISOCLINISM OF A PAIR OF LIE ALGEBRAS AND FACTOR SETS
    Moghaddam, Mohammad Reza R.
    Parvaneh, Foroud
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2009, 2 (02) : 213 - 225
  • [13] On covers of Lie algebras
    Batten, P
    Stitzinger, E
    COMMUNICATIONS IN ALGEBRA, 1996, 24 (14) : 4301 - 4317
  • [14] CHARACTERIZING n-ISOCLINISM CLASSES OF LIE ALGEBRAS
    Salemkar, Ali Reza
    Mirzaei, Fateme
    COMMUNICATIONS IN ALGEBRA, 2010, 38 (09) : 3392 - 3403
  • [15] Some Properties of the c-Nilpotent Multiplier and c-Covers of Lie Algebras
    Rismanchian, Mohammad Reza
    Araskhan, Mehdi
    ALGEBRA COLLOQUIUM, 2014, 21 (03) : 421 - 426
  • [16] Lie-isoclinism in Leibniz n-algebras
    Safa, Hesam
    Biyogmam, Guy R.
    SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2023, 17 (02): : 774 - 788
  • [17] Computing covers of Lie algebras
    Ellis, Graham
    Mohammadzadeh, Hamid
    Tavallaee, Hamid
    COMPUTATIONAL GROUP THEORY AND THE THEORY OF GROUPS, II, 2010, 511 : 25 - +
  • [18] On Covers of Perfect Lie Algebras
    Salemkar, Ali Reza
    Edalatzadeh, Behrouz
    Mohammadzadeh, Hamid
    ALGEBRA COLLOQUIUM, 2011, 18 (03) : 419 - 427
  • [19] CHARACTERIZATION OF RELATIVE n-ISOCLINISM OF A PAIR OF LIE ALGEBRAS
    Moghaddam, M. R. R.
    Saeedi, F.
    Tajnia, S.
    Veisi, B.
    QUAESTIONES MATHEMATICAE, 2015, 38 (01) : 27 - 39
  • [20] Some properties of fuzzy Lie algebras
    Keyun, Q
    Yang, X
    PROCEEDINGS OF THE FIFTH JOINT CONFERENCE ON INFORMATION SCIENCES, VOLS 1 AND 2, 2000, : 91 - 91