The formin FHOD1 and the small GTPase Rac1 promote vaccinia virus actin-based motility

被引:25
|
作者
Alvarez, Diego E. [1 ]
Agaisse, Herve [1 ]
机构
[1] Yale Univ, Sch Med, Boyer Ctr Mol Med, Dept Microbial Pathogenesis, New Haven, CT 06519 USA
来源
JOURNAL OF CELL BIOLOGY | 2013年 / 202卷 / 07期
基金
美国国家卫生研究院;
关键词
PROTEIN N-WASP; INTRACELLULAR MOVEMENT; ARP2/3; COMPLEX; CONTAINING MICROVILLI; MAMMALIAN FORMIN; BINDING-PROTEIN; TAIL FORMATION; MOUSE FORMIN; NUCLEATION; IDENTIFICATION;
D O I
10.1083/jcb.201303055
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Vaccinia virus dissemination relies on the N-WASP-ARP2/3 pathway, which mediates actin tail formation underneath cell-associated extracellular viruses (CEVs). Here, we uncover a previously unappreciated role for the formin FHOD1 and the small GTPase Rac1 in vaccinia actin tail formation. FHOD1 depletion decreased the number of CEVs forming actin tails and impaired the elongation rate of the formed actin tails. Recruitment of FHOD1 to actin tails relied on its GTPase binding domain in addition to its FH2 domain. In agreement with previous studies showing that FHOD1 is activated by the small GTPase Rac1, Rac1 was enriched and activated at the membrane surrounding actin tails. Rac1 depletion or expression of dominant-negative Rac1 phenocopied the effects of FHOD1 depletion and impaired the recruitment of FHOD1 to actin tails. FHOD1 overexpression rescued the actin tail formation defects observed in cells overexpressing dominant-negative Rac1. Altogether, our results indicate that, to display robust actin-based motility, vaccinia virus integrates the activity of the N-WASP-ARP2/3 and Rac1-FHOD1 pathways.
引用
收藏
页码:1075 / 1090
页数:16
相关论文
共 50 条
  • [21] Activation of the small GTPase Rac1 by cGMP dependent protein kinase
    Browning, DD
    Ye, RD
    FASEB JOURNAL, 2002, 16 (05): : A1179 - A1179
  • [22] Translocation of cortactin to the cell periphery is mediated by the small GTPase Rac1
    Weed, SA
    Du, YR
    Parsons, JT
    JOURNAL OF CELL SCIENCE, 1998, 111 : 2433 - 2443
  • [23] The small GTPase Rac1 controls tubulogenesis in Drosophila melanogaster.
    Sollier, K.
    Chartier, F.
    Laprise, P.
    MOLECULAR BIOLOGY OF THE CELL, 2014, 25
  • [24] Rac1 is the small GTPase responsible for regulating the neutrophil chemotaxis compass
    Sun, CX
    Downey, GP
    Zhu, F
    Koh, ALY
    Thang, H
    Glogauer, M
    BLOOD, 2004, 104 (12) : 3758 - 3765
  • [25] Small GTPase Rac1:: Structure, localization, and expression of the human gene
    Matos, P
    Skaug, J
    Marques, B
    Beck, S
    Veríssimo, F
    Gespach, C
    Boavida, MG
    Scherer, SW
    Jordan, P
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2000, 277 (03) : 741 - 751
  • [26] Essential role of small GTPase Rac1 during limb development
    Suzuki, D.
    Yamada, A.
    Amano, T.
    Kimura, A.
    Yasuhara, R.
    Sakahara, M.
    Tamura, M.
    Tsumaki, N.
    Takeda, S.
    Nakamura, M.
    Shiroishi, T.
    Aiba, A.
    Kamijo, R.
    BONE, 2009, 44 : S50 - S51
  • [27] Regulation of UV induced keratinocyte apoptosis by the small GTPase Rac1
    Deshmukh, J.
    Haase, I.
    EXPERIMENTAL DERMATOLOGY, 2014, 23 (03) : E40 - E40
  • [28] Activation of the Rac-binding partner FHOD1 induces actin stress fibers via a ROCK-dependent mechanism
    Gasteier, JE
    Madrid, R
    Krautkrämer, E
    Schröder, S
    Muranyi, W
    Benichou, S
    Fackler, OT
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (40) : 38902 - 38912
  • [29] Kinesin-dependent movement on microtubules precedes actin-based motility of vaccinia virus at the plasma membrane
    Ploubidou, A
    Rietdorf, J
    Reckmann, I
    Holmström, A
    Frischknecht, F
    Zettl, M
    Zimmermann, T
    Way, M
    MOLECULAR BIOLOGY OF THE CELL, 2001, 12 : 138A - 138A
  • [30] Metabolic enzyme LDHA activates Rac1 GTPase as a noncanonical mechanism to promote cancer
    Juan Liu
    Cen Zhang
    Tianliang Zhang
    Chun-Yuan Chang
    Jianming Wang
    Ludvinna Bazile
    Lanjing Zhang
    Bruce G. Haffty
    Wenwei Hu
    Zhaohui Feng
    Nature Metabolism, 2022, 4 : 1830 - 1846