advection-diffusion problem;
stabilized finite element methods;
shock-capturing;
a priori analysis;
a posteriori analysis;
D O I:
10.1016/S0045-7825(02)00222-0
中图分类号:
T [工业技术];
学科分类号:
08 ;
摘要:
Stabilized FEM of streamline-diffusion type for advection-diffusion problems may exhibit local oscillations in crosswind direction(s). As a remedy, a shock-capturing variant of such stabilized schemes is considered as an additional consistent (but nonlinear) stabilization. We prove existence of discrete solutions. Then we present some a priori and a posteriori estimates. Finally we address the efficient solution of the arising nonlinear discrete problems. (C) 2002 Elsevier Science B.V. All rights reserved.
机构:
Institute of Computational Mathematics and Mathematical Geophysics, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090Institute of Computational Mathematics and Mathematical Geophysics, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090
Kuzin V.I.
Kravtchenko V.V.
论文数: 0引用数: 0
h-index: 0
机构:
Novosibirsk State University, Novosibirsk 630090Institute of Computational Mathematics and Mathematical Geophysics, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090
机构:
Univ Texas El Paso, Dept Math Sci, El Paso, TX 79902 USA
Univ Texas El Paso, Computat Sci Program, El Paso, TX 79902 USAUniv Texas El Paso, Dept Math Sci, El Paso, TX 79902 USA
Zeng, Xianyi
Hasan, Md Mahmudul
论文数: 0引用数: 0
h-index: 0
机构:
Univ Texas El Paso, Computat Sci Program, El Paso, TX 79902 USAUniv Texas El Paso, Dept Math Sci, El Paso, TX 79902 USA