Nonincremental proper generalized decomposition solution of parametric uncoupled models defined in evolving domains

被引:6
|
作者
Ammar, Amine [1 ]
Cueto, Elias [2 ]
Chinesta, Francisco [3 ]
机构
[1] Arts & Metiers ParisTech, F-49035 Angers 01, France
[2] Univ Zaragoza, Aragon Inst Engn Res I3A, Zaragoza 50018, Spain
[3] Ecole Cent Nantes, EADS Corp Fdn Int Chair, F-44300 Nantes, France
关键词
model reduction; proper generalized decomposition; large geometrical transformations; meshless methods; natural element method; parametric models; REDUCTION; SOLVERS; FAMILY;
D O I
10.1002/nme.4413
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This work addresses the recurrent issue related to the existence of reduced bases related to the solution of parametric models defined in evolving domains. In this first part of the work, we address the case of decoupled kinematics, that is, models whose solution does not affect the domain in which they are defined. The chosen framework considers an updated Lagrangian description of the kinematics, solved by using natural neighbor Galerkin methods within a nonincremental spacetime framework that can be generalized for addressing parametric models. Examples showing the performance and potentialities of the proposed methodology are included.Copyright (c) 2012 John Wiley & Sons, Ltd.
引用
收藏
页码:887 / 904
页数:18
相关论文
共 40 条
  • [1] On the deterministic solution of multidimensional parametric models using the Proper Generalized Decomposition
    Pruliere, E.
    Chinesta, F.
    Ammar, A.
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2010, 81 (04) : 791 - 810
  • [2] TO BE OR NOT TO BE INTRUSIVE? THE SOLUTION OF PARAMETRIC AND STOCHASTIC EQUATIONS-PROPER GENERALIZED DECOMPOSITION
    Giraldi, Loic
    Liu, Dishi
    Matthies, Hermann G.
    Nouy, Anthony
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (01): : A347 - A368
  • [3] An overlapping domain decomposition method for the solution of parametric elliptic problems via proper generalized decomposition
    Discacciati, Marco
    Evans, Ben J.
    Giacomini, Matteo
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 418
  • [4] Proper generalized decomposition of multiscale models
    Chinesta, F.
    Ammar, A.
    Cueto, E.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2010, 83 (8-9) : 1114 - 1132
  • [5] Parametric modeling of an electromagnetic compression device with the proper generalized decomposition
    Heuze, Thomas
    Leygue, Adrien
    Racineux, Guillaume
    [J]. INTERNATIONAL JOURNAL OF MATERIAL FORMING, 2016, 9 (01) : 101 - 113
  • [6] Parametric modeling of an electromagnetic compression device with the proper generalized decomposition
    Thomas Heuzé
    Adrien Leygue
    Guillaume Racineux
    [J]. International Journal of Material Forming, 2016, 9 : 101 - 113
  • [7] On the computation of Proper Generalized Decomposition modes of parametric elliptic problems
    Azaïez M.
    Chacón Rebollo T.
    Gómez Mármol M.
    [J]. SeMA Journal, 2020, 77 (1) : 59 - 72
  • [8] Parametric analysis of Magnetoharmonic problem based on Proper Generalized Decomposition
    Henneron, Thomas
    Clenet, Stephane
    [J]. 2016 IEEE CONFERENCE ON ELECTROMAGNETIC FIELD COMPUTATION (CEFC), 2016,
  • [9] Proper generalized decomposition of time-multiscale models
    Ammar, Amine
    Chinesta, Francisco
    Cueto, Elias
    Doblare, Manuel
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2012, 90 (05) : 569 - 596
  • [10] A NEW ALGORITHM OF PROPER GENERALIZED DECOMPOSITION FOR PARAMETRIC SYMMETRIC ELLIPTIC PROBLEMS
    Azaiez, M.
    Ben Belgacem, F.
    Casado-Diaz, J.
    Rebollo, T. Chacon
    Murat, F.
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2018, 50 (05) : 5426 - 5445