Algebraic multilevel method with application to the Maxwell equations

被引:0
|
作者
Shapira, Y [1 ]
机构
[1] Technion Israel Inst Technol, Dept Comp Sci, IL-32000 Haifa, Israel
关键词
Algebraic multilevel methods;
D O I
10.1016/S0377-0427(01)00511-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A multilevel method for the iterative solution of large sparse linear systems is introduced. The method is defined in terms of the coefficient matrix alone; no underlying PDE or mesh is assumed. The method is applied to the nonhermitian, complex Maxwell equations in 3D. When supplemented with outer acceleration, the V(1, 5) cycle yields the convergence factor 0.4. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:207 / 211
页数:5
相关论文
共 50 条
  • [21] The factorization method for Maxwell's equations
    Kirsch, A
    INVERSE PROBLEMS, 2004, 20 (06) : S117 - S134
  • [22] Multigrid method for Maxwell's equations
    Hiptmair, R
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 36 (01) : 204 - 225
  • [23] The factorization method for Maxwell's equations
    Kirsch, A
    ADVANCES IN SCATTERING AND BIOMEDICAL ENGINEERING, PROCEEDINGS, 2004, : 80 - 90
  • [24] Algebraic Multilevel Iteration Method for Stieltjes Matrices
    Axelsson, O.
    Neytcheva, M.
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 1994, 1 (03) : 213 - 236
  • [25] A MIXED METHOD FOR APPROXIMATING MAXWELL EQUATIONS
    MONK, PB
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1991, 28 (06) : 1610 - 1634
  • [26] A BOOTSTRAP ALGEBRAIC MULTILEVEL METHOD FOR MARKOV CHAINS
    Bolten, Matthias
    Brandt, Achi
    Brannick, James
    Frommer, Andreas
    Kahl, Karsten
    Livshits, Ira
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2011, 33 (06): : 3425 - 3446
  • [27] Model case analysis of an algebraic multilevel method
    Shapira, Y
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 1999, 6 (08) : 655 - 685
  • [28] Correction to: Algebraic techniques for Maxwell’s equations in commutative quaternionic electromagnetics
    Zhenwei Guo
    Dong Zhang
    Vasily I. Vasiliev
    Tongsong Jiang
    The European Physical Journal Plus, 137
  • [29] NEW SPINOR REPRESENTATION OF MAXWELL EQUATIONS .2. ALGEBRAIC PROPERTIES
    CAMPOLATTARO, AA
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1980, 19 (02) : 127 - 138
  • [30] Generalization of the algebraic method of group classification with application to nonlinear wave and elliptic equations
    Vaneeva, Olena O.
    Bihlo, Alexander
    Popovych, Roman O.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2020, 91 (91):