Real-time estimation of mean field bias in radar rainfall data

被引:180
|
作者
Seo, DJ
Breidenbach, JP
Johnson, ER
机构
[1] Natl Weather Serv, Hydrol Res Lab, Off Hydrol, Silver Spring, MD 20910 USA
[2] Natl Weather Serv, Hydrol Operat Div, Off Hydrol, Silver Spring, MD 20910 USA
关键词
radar; rainfall; bias; estimation;
D O I
10.1016/S0022-1694(99)00106-7
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
To reduce systematic errors in radar rainfall data used for operational hydrologic forecasting, the precipitation estimation stream in the National Weather Service (NWS) uses procedures that estimate mean field bias in real time. Being a multiplicative correction over a very large area, bias adjustment has a huge impact, particularly on volumetric estimation of rainwater, and hence performance of the procedure is extremely important to quantitative hydrologic forecasting using radar rainfall data. In this paper, we describe a new procedure far real-time estimation of mean field bias in WSR-88D (Weather Surveillance Radar-1988 Doppler version) rainfall products. Based largely on operational experience of the existing procedures in NWS, the proposed procedure is intended to be unbiased, parsimonious, and intuitive. To evaluate the procedure, true validation is performed using hourly rain gage and WSR-88D rainfall data from Tulsa and Twin Lakes, Oklahoma. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
下载
收藏
页码:131 / 147
页数:17
相关论文
共 50 条
  • [21] Real-time urban drainage system modelling using weather radar rainfall data
    Yuan, J.M.
    Tilford, K.A.
    Jiang, H.Y.
    Cluckie, I.D.
    Physics and Chemistry of the Earth Part B:Hydrology, Oceans and Atmosphere, 24 (08): : 915 - 919
  • [22] Real-time urban drainage system modelling using weather radar rainfall data
    Yuan, JM
    Tilford, KA
    Jiang, HY
    Cluckie, ID
    PHYSICS AND CHEMISTRY OF THE EARTH PART B-HYDROLOGY OCEANS AND ATMOSPHERE, 1999, 24 (08): : 915 - 919
  • [23] Real-time GPS receiver bias estimation
    Kenpankho, Prasert
    Chaichana, Amornchai
    Trachu, Koson
    Supnithi, Pornchai
    Hozumi, Kornyanat
    ADVANCES IN SPACE RESEARCH, 2021, 68 (05) : 2152 - 2159
  • [24] Real-time DoA Estimation for Automotive Radar
    Wu, Yubo
    Li, Chengzhang
    Hou, Y. Thomas
    Lou, Wenjing
    2021 18TH EUROPEAN RADAR CONFERENCE (EURAD), 2021, : 437 - 440
  • [25] Real-time radar-rainfall estimation for hydrologic forecasting: a prototype system in Iowa, USA
    Krajewski, Witold F.
    Mantilla, Ricardo
    Seo, Bong-Chul
    Cunha, Luciana
    Domaszczynski, Piotr
    Goska, Radoslaw
    Singh, Satpreet
    WEATHER RADAR AND HYDROLOGY, 2012, 351 : 441 - 447
  • [26] REAL-TIME ESTIMATION OF OCEAN WAVE FIELDS FROM MARINE RADAR DATA
    Lyzenga, David R.
    Nwogu, Okey G.
    Beck, Robert F.
    O'Brien, Andrew
    Johnson, Joel
    de Paolo, Tony
    Terrill, Eric
    2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 3622 - 3625
  • [27] Real-time estimation of hazard for landslides triggered by rainfall
    Iiritano, G
    Versace, P
    Sirangelo, B
    ENVIRONMENTAL GEOLOGY, 1998, 35 (2-3): : 175 - 183
  • [28] A REAL-TIME RADAR DATA PROCESSING SYSTEM
    SMITH, PL
    BOARDMAN, JH
    BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 1968, 49 (5P2) : 564 - &
  • [29] A neural network approach to real-time rainfall estimation for Africa using satellite data
    Grimes, DIF
    Coppola, E
    Verdecchia, M
    Visconti, G
    JOURNAL OF HYDROMETEOROLOGY, 2003, 4 (06) : 1119 - 1133
  • [30] Real-Time Thermospheric Density Estimation via Radar and GPS Tracking Data Assimilation
    Gondelach, David J.
    Linares, Richard
    SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS, 2021, 19 (04):