Restart-Based Genetic Algorithm for the Quadratic Assignment Problem

被引:1
|
作者
Misevicius, Alfonsas [1 ]
机构
[1] Kaunas Univ Technol, LT-51368 Kaunas, Lithuania
关键词
LOCAL SEARCH;
D O I
10.1007/978-1-84882-171-2_7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The power of genetic algorithms (GAs) has been demonstrated for various domains of the computer science, including combinatorial optimization. In this paper, we propose a new conceptual modification of the genetic algorithm entitled a "restart-based genetic algorithm" (RGA). An effective implementation of RGA for a well-known combinatorial optimization problem, the quadratic assignment problem (QAP), is discussed. The results obtained from the computational experiments on the QAP instances from the publicly available library QAPLIB show excellent performance of RGA. This is especially true for the real-life like QAPs.
引用
收藏
页码:91 / 104
页数:14
相关论文
共 50 条
  • [41] A new greedy algorithm for the quadratic assignment problem
    Theodoros P. Gevezes
    Leonidas S. Pitsoulis
    Optimization Letters, 2013, 7 : 207 - 220
  • [42] A new greedy algorithm for the quadratic assignment problem
    Gevezes, Theodoros P.
    Pitsoulis, Leonidas S.
    OPTIMIZATION LETTERS, 2013, 7 (02) : 207 - 220
  • [43] A modified Bat Algorithm for the Quadratic Assignment Problem
    Shukla, Apurv
    2015 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2015, : 486 - 490
  • [44] A tabu search algorithm for the quadratic assignment problem
    Misevicius, A
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2005, 30 (01) : 95 - 111
  • [45] Instance-Based Algorithm Selection on Quadratic Assignment Problem Landscapes
    Beham, Andreas
    Affenzeller, Michael
    Wagner, Stefan
    PROCEEDINGS OF THE 2017 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION (GECCO'17 COMPANION), 2017, : 1471 - 1478
  • [46] A hybrid method integrating an elite genetic algorithm with tabu search for the quadratic assignment problem
    Zhang, Huizhen
    Liu, Fan
    Zhou, Yuyang
    Zhang, Ziying
    INFORMATION SCIENCES, 2020, 539 (539) : 347 - 374
  • [47] Hierarchicity-based (self-similar) hybrid genetic algorithm for the grey pattern quadratic assignment problem
    Misevicius, Alfonsas
    Palubeckis, Gintaras
    Drezner, Zvi
    MEMETIC COMPUTING, 2021, 13 (01) : 69 - 90
  • [48] Hierarchicity-based (self-similar) hybrid genetic algorithm for the grey pattern quadratic assignment problem
    Alfonsas Misevičius
    Gintaras Palubeckis
    Zvi Drezner
    Memetic Computing, 2021, 13 : 69 - 90
  • [49] A modified simulated annealing algorithm for the quadratic assignment problem
    Misevicius, A
    INFORMATICA, 2003, 14 (04) : 497 - 514
  • [50] Algorithm Selection on Generalized Quadratic Assignment Problem Landscapes
    Beham, Andreas
    Wagner, Stefan
    Affenzeller, Michael
    GECCO'18: PROCEEDINGS OF THE 2018 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2018, : 253 - 260