An interior-point algorithm for nonconvex nonlinear programming

被引:340
|
作者
Vanderbei, RJ [1 ]
Shanno, DF
机构
[1] Princeton Univ, Princeton, NJ 08544 USA
[2] Rutgers State Univ, Piscataway, NJ 08855 USA
关键词
nonlinear programming; interior-point methods; nonconvex optimization;
D O I
10.1023/A:1008677427361
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The paper describes an interior-point algorithm for nonconvex nonlinear programming which is a direct extension of interior-point methods for linear and quadratic programming. Major modifications include a merit function and an altered search direction to ensure that a descent direction for the merit function is obtained. Preliminary numerical testing indicates that the method is robust. Further, numerical comparisons with MINOS and LANCELOT show that the method is efficient, and has the promise of greatly reducing solution times on at least some classes of models.
引用
收藏
页码:231 / 252
页数:22
相关论文
共 50 条
  • [41] A primal-dual interior-point algorithm for quadratic programming
    Juan Dominguez
    María D. González-Lima
    Numerical Algorithms, 2006, 42 : 1 - 30
  • [42] An interior-point trust-funnel algorithm for nonlinear optimization
    Frank E. Curtis
    Nicholas I. M. Gould
    Daniel P. Robinson
    Philippe L. Toint
    Mathematical Programming, 2017, 161 : 73 - 134
  • [43] On some interior-point algorithms for nonconvex quadratic optimization
    Paul Tseng
    Yinyu Ye
    Mathematical Programming, 2002, 93 : 217 - 225
  • [44] INTERIOR-POINT ALGORITHMS FOR SEMIINFINITE PROGRAMMING
    TODD, MJ
    MATHEMATICAL PROGRAMMING, 1994, 65 (02) : 217 - 245
  • [45] On some interior-point algorithms for nonconvex quadratic optimization
    Tseng, P
    Ye, YY
    MATHEMATICAL PROGRAMMING, 2002, 93 (02) : 217 - 225
  • [46] An interior-point method for semidefinite programming
    Helmberg, C
    Rendl, F
    Vanderbei, RJ
    Wolkowicz, H
    SIAM JOURNAL ON OPTIMIZATION, 1996, 6 (02) : 342 - 361
  • [47] An interior-point algorithm for elastoplasticity
    Krabbenhoft, K.
    Lyamin, A. V.
    Sloan, S. W.
    Wriggers, P.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2007, 69 (03) : 592 - 626
  • [48] An interior-point trust-funnel algorithm for nonlinear optimization
    Curtis, Frank E.
    Gould, Nicholas I. M.
    Robinson, Daniel P.
    Toint, Philippe L.
    MATHEMATICAL PROGRAMMING, 2017, 161 (1-2) : 73 - 134
  • [49] Local Convergence of the Interior-Point Newton Method for General Nonlinear Programming
    M. M. El-Alem
    S. El-Sayed
    B. El-Sobky
    Journal of Optimization Theory and Applications, 2004, 120 : 487 - 502
  • [50] Local convergence of the interior-point Newton method for general nonlinear programming
    El-Alem, MM
    El-Sayed, S
    El-Sobky, B
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2004, 120 (03) : 487 - 502