Kardar-Parisi-Zhang equation with spatially correlated noise: A unified picture from nonperturbative renormalization group

被引:34
|
作者
Kloss, Thomas [1 ]
Canet, Leonie [2 ]
Delamotte, Bertrand [3 ,4 ]
Wschebor, Nicolas [3 ,4 ,5 ]
机构
[1] Univ Fed Rio Grande do Norte, Int Inst Phys, BR-59078400 Natal, RN, Brazil
[2] Univ Grenoble 1, CNRS, UMR 5493, LPMMC, F-38042 Grenoble, France
[3] Univ Paris 06, Sorbonne Univ, UMR 7600, LPTMC, F-75005 Paris, France
[4] CNRS, UMR 7600, LPTMC, F-75005 Paris, France
[5] Univ Republica, Fac Ingn, Inst Fis, Montevideo 11000, Uruguay
来源
PHYSICAL REVIEW E | 2014年 / 89卷 / 02期
关键词
SURFACE GROWTH; UNIVERSAL FLUCTUATIONS; DIRECTED POLYMERS; INTERFACES; EXPONENTS; DYNAMICS; BURGERS; ENERGY;
D O I
10.1103/PhysRevE.89.022108
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We investigate the scaling regimes of the Kardar-Parisi-Zhang (KPZ) equation in the presence of spatially correlated noise with power-law decay D(p) similar to p(-2 rho) in Fourier space, using a nonperturbative renormalization group approach. We determine the full phase diagram of the system as a function of. and the dimension d. In addition to the weak-coupling part of the diagram, which agrees with the results from Europhys. Lett. 47, 14 (1999) and Eur. Phys. J. B 9, 491 (1999), we find the two fixed points describing the short-range- (SR) and long-range- (LR) dominated strong-coupling phases. In contrast with a suggestion in the references cited above, we show that, for all values of rho, there exists a unique strong-coupling SR fixed point that can be continuously followed as a function of d. We show in particular that the existence and the behavior of the LR fixed point do not provide any hint for 4 being the upper critical dimension of the KPZ equation with SR noise.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Comment on "Dynamic renormalization group approach to the Kardar-Parisi-Zhang equation and its results derived"
    Shiwa, Y
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1999, 68 (02) : 698 - 698
  • [32] THE KARDAR-PARISI-ZHANG EQUATION AND UNIVERSALITY CLASS
    Corwin, Ivan
    [J]. RANDOM MATRICES-THEORY AND APPLICATIONS, 2012, 1 (01)
  • [33] Phenomenology of aging in the Kardar-Parisi-Zhang equation
    Henkel, Malte
    Noh, Jae Dong
    Pleimling, Michel
    [J]. PHYSICAL REVIEW E, 2012, 85 (03):
  • [34] GLASSY SOLUTIONS OF THE KARDAR-PARISI-ZHANG EQUATION
    MOORE, MA
    BLUM, T
    DOHERTY, JP
    MARSILI, M
    [J]. PHYSICAL REVIEW LETTERS, 1995, 74 (21) : 4257 - 4260
  • [35] Pseudospectral method for the Kardar-Parisi-Zhang equation
    Giada, L
    Giacometti, A
    Rossi, M
    [J]. PHYSICAL REVIEW E, 2002, 65 (03):
  • [36] Improved discretization of the Kardar-Parisi-Zhang equation
    Lam, CH
    Shin, FG
    [J]. PHYSICAL REVIEW E, 1998, 58 (05): : 5592 - 5595
  • [37] Kardar-Parisi-Zhang equation and the delta expansion
    Paul, I
    Tewari, S
    Bhattacharjee, JK
    [J]. PHYSICAL REVIEW E, 1997, 55 (03) : R2097 - R2099
  • [38] Numerical study of the Kardar-Parisi-Zhang equation
    Miranda, Vladimir G.
    Reis, Fabio D. A. Aarao
    [J]. PHYSICAL REVIEW E, 2008, 77 (03):
  • [39] THE KARDAR-PARISI-ZHANG EQUATION AND UNIVERSALITY CLASS
    Quastel, J. D.
    [J]. XVIITH INTERNATIONAL CONGRESS ON MATHEMATICAL PHYSICS, 2014, : 113 - 133
  • [40] Random noise term effect on discretized Kardar-Parisi-Zhang equation
    Sayfidinov, Okhunjon
    Bognar, Gabriella
    [J]. INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2022, ICNAAM-2022, 2024, 3094