Kardar-Parisi-Zhang equation with spatially correlated noise: A unified picture from nonperturbative renormalization group

被引:34
|
作者
Kloss, Thomas [1 ]
Canet, Leonie [2 ]
Delamotte, Bertrand [3 ,4 ]
Wschebor, Nicolas [3 ,4 ,5 ]
机构
[1] Univ Fed Rio Grande do Norte, Int Inst Phys, BR-59078400 Natal, RN, Brazil
[2] Univ Grenoble 1, CNRS, UMR 5493, LPMMC, F-38042 Grenoble, France
[3] Univ Paris 06, Sorbonne Univ, UMR 7600, LPTMC, F-75005 Paris, France
[4] CNRS, UMR 7600, LPTMC, F-75005 Paris, France
[5] Univ Republica, Fac Ingn, Inst Fis, Montevideo 11000, Uruguay
来源
PHYSICAL REVIEW E | 2014年 / 89卷 / 02期
关键词
SURFACE GROWTH; UNIVERSAL FLUCTUATIONS; DIRECTED POLYMERS; INTERFACES; EXPONENTS; DYNAMICS; BURGERS; ENERGY;
D O I
10.1103/PhysRevE.89.022108
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We investigate the scaling regimes of the Kardar-Parisi-Zhang (KPZ) equation in the presence of spatially correlated noise with power-law decay D(p) similar to p(-2 rho) in Fourier space, using a nonperturbative renormalization group approach. We determine the full phase diagram of the system as a function of. and the dimension d. In addition to the weak-coupling part of the diagram, which agrees with the results from Europhys. Lett. 47, 14 (1999) and Eur. Phys. J. B 9, 491 (1999), we find the two fixed points describing the short-range- (SR) and long-range- (LR) dominated strong-coupling phases. In contrast with a suggestion in the references cited above, we show that, for all values of rho, there exists a unique strong-coupling SR fixed point that can be continuously followed as a function of d. We show in particular that the existence and the behavior of the LR fixed point do not provide any hint for 4 being the upper critical dimension of the KPZ equation with SR noise.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Kardar-Parisi-Zhang equation with temporally correlated noise: A nonperturbative renormalization group approach
    Squizzato, Davide
    Canet, Leonie
    [J]. PHYSICAL REVIEW E, 2019, 100 (06)
  • [2] Nonperturbative Renormalization Group for the Kardar-Parisi-Zhang Equation
    Canet, Leonie
    Chate, Hugues
    Delamotte, Bertrand
    Wschebor, Nicolas
    [J]. PHYSICAL REVIEW LETTERS, 2010, 104 (15)
  • [3] Renormalization group analysis of the anisotropic nonlocal Kardar-Parisi-Zhang equation with spatially correlated noise
    Jung, Y
    Park, K
    Kim, HJ
    Kim, IM
    [J]. PHYSICAL REVIEW E, 2000, 62 (02): : 1893 - 1896
  • [4] RENORMALIZATION-GROUP ANALYSIS OF THE ANISOTROPIC KARDAR-PARISI-ZHANG EQUATION WITH SPATIALLY CORRELATED NOISE
    JEONG, H
    KAHNG, B
    KIM, D
    [J]. PHYSICAL REVIEW E, 1995, 52 (02) : R1292 - R1295
  • [5] Renormalization group analysis of the anisotropic nonlocal Kardar-Parisi-Zhang equation with spatially correlated noise
    Jung, Youngkyun
    Park, Kwangho
    Kim, Hyun-Joo
    Kim, In-Mook
    [J]. Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 2000, 62 (2 A): : 1893 - 1896
  • [6] Nonlocal Kardar-Parisi-Zhang equation with spatially correlated noise
    Chattopadhyay, AK
    [J]. PHYSICAL REVIEW E, 1999, 60 (01): : 293 - 296
  • [7] Exact results for the Kardar-Parisi-Zhang equation with spatially correlated noise
    Janssen, HK
    Täuber, UC
    Frey, E
    [J]. EUROPEAN PHYSICAL JOURNAL B, 1999, 9 (03): : 491 - 511
  • [8] Exact results for the Kardar-Parisi-Zhang equation with spatially correlated noise
    H.K. Janssen
    U.C. Täuber
    E. Frey
    [J]. The European Physical Journal B - Condensed Matter and Complex Systems, 1999, 9 : 491 - 511
  • [9] ON THE RENORMALIZATION OF THE KARDAR-PARISI-ZHANG EQUATION
    LASSIG, M
    [J]. NUCLEAR PHYSICS B, 1995, 448 (03) : 559 - 574