Electrostatic assembly of binary nanoparticle superlattices using protein cages

被引:0
|
作者
Kostiainen, Mauri A. [1 ]
Hiekkataipale, Panu [1 ]
Laiho, Ari [2 ]
Lemieux, Vincent [3 ]
Seitsonen, Jani [1 ]
Ruokolainen, Janne [1 ]
Ceci, Pierpaolo [4 ]
机构
[1] Aalto Univ, Dept Appl Phys, Espoo 00076, Finland
[2] Aalto Univ, Sch Sci, OV Lounasmaa Lab, Adv Magnet Imaging Ctr, Espoo 00076, Finland
[3] St Jean Photochim SJPC, St Jean, PQ J3B 8J8, Canada
[4] Natl Res Council Italy CNR, Inst Mol Biol & Pathol, I-00185 Rome, Italy
基金
芬兰科学院;
关键词
CRYSTALS; MAGNETOFERRITIN; CRYSTALLIZATION;
D O I
10.1038/NNANO.2012.220
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Binary nanoparticle superlattices are periodic nanostructures with lattice constants much shorter than the wavelength of light(1,2) and could be used to prepare multifunctional metamaterials(3,4). Such superlattices are typically made from synthetic nanoparticles(5-8), and although biohybrid structures have been developed(9-15), incorporating biological building blocks into binary nanoparticle superlattices remains challenging(16-18). Protein-based nanocages provide a complex yet monodisperse and geometrically well-defined hollow cage that can be used to encapsulate different materials(19,20). Such protein cages have been used to program the self-assembly of encapsulated materials to form free-standing crystals(21,22) and superlattices at interfaces(21,23) or in solution(24,25). Here, we show that electrostatically patchy protein cages-cowpea chlorotic mottle virus and ferritin cages-can be used to direct the self-assembly of three-dimensional binary superlattices. The negatively charged cages can encapsulate RNA or superparamagnetic iron oxide nanoparticles, and the superlattices are formed through tunable electrostatic interactions with positively charged gold nanoparticles. Gold nanoparticles and viruses form an AB(8)(fcc) crystal structure that is not isostructural with any known atomic or molecular crystal structure and has previously been observed only with large colloidal polymer particles(26). Gold nanoparticles and empty or nanoparticle-loaded ferritin cages form an interpenetrating simple cubic AB structure (isostructural with CsCl). We also show that these magnetic assemblies provide contrast enhancement in magnetic resonance imaging.
引用
收藏
页码:52 / +
页数:5
相关论文
共 50 条
  • [41] Ultrafast Electron Transfer in Binary Nanoparticle Superlattices under High Pressure
    Cheng, Ji-Chao
    Pan, Ling-Yun
    Tu, Hong-Yu
    Qi, Hong-Jian
    Ji, Wen-Yu
    Li, Fang-Fei
    Wang, Ying-Hui
    Xu, Shu-Ping
    Men, Zhi-Wei
    Cui, Tian
    PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2021, 15 (07):
  • [42] Binary nanoparticle superlattices in the semiconductor-semiconductor system: CdTe and CdSe
    Chen, Zhuoying
    Moore, Jenny
    Radtke, Guillaume
    Sirringhaus, Henning
    O'Brien, Stephen
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (50) : 15702 - 15709
  • [43] Switching binary states of nanoparticle superlattices and dimer clusters by DNA strands
    Maye, Mathew M.
    Kumara, Mudalige Thilak
    Nykypanchuk, Dmytro
    Sherman, William B.
    Gang, Oleg
    NATURE NANOTECHNOLOGY, 2010, 5 (02) : 116 - 120
  • [44] Structural characterization of self-assembled multifunctional binary nanoparticle superlattices
    Shevchenko, Elena V.
    Talapin, Dmitri V.
    Murray, Christopher B.
    O'Brien, Stephen
    Journal of the American Chemical Society, 2006, 128 (11): : 3620 - 3637
  • [45] Electrostatic Selectivity in Protein-Nanoparticle Interactions
    Chen, Kaimin
    Xu, Yisheng
    Rana, Subinoy
    Miranda, Oscar R.
    Dubin, Paul L.
    Rotello, Vincent M.
    Sun, Lianhong
    Guo, Xuhong
    BIOMACROMOLECULES, 2011, 12 (07) : 2552 - 2561
  • [46] Controlled Assembly of Nanoparticle Structures: Spherical and Toroidal Superlattices and Nanoparticle-Coated Polymeric Beads
    Isojima, Tatsushi
    Suh, Su Kyung
    Sande, John B. Vander
    Hatton, T. Alan
    LANGMUIR, 2009, 25 (14) : 8292 - 8298
  • [47] Electrostatic assembly of nanoparticle systems for controlled and tissue targeted release
    Hammond, Paula
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253
  • [48] Investigation on the self-assembly of gold nanoparticles into bidisperse nanoparticle superlattices
    Ji, Na
    Chen, Yuanzhi
    Gong, Pingyun
    Cao, Keyan
    Peng, Dong-Liang
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2015, 480 : 11 - 18
  • [49] Self-Assembly and Structural Characterization of Au Binary Nanocrystal Superlattices
    Zhao, Yanan
    He, Min
    Liu, Xiaofang
    Liu, Bin
    Yang, Jianhui
    ACTA PHYSICO-CHIMICA SINICA, 2020, 36 (09)
  • [50] Optimal control of electrostatic self-assembly of binary monolayers
    Shestopalov, N. V.
    Henkelman, G.
    Powell, C. T.
    Rodin, G. J.
    NEW JOURNAL OF PHYSICS, 2009, 11