Impact of non-Maxwellian electron velocity distribution functions on inferred plasma parameters in collective Thomson scattering

被引:17
|
作者
Milder, A. L. [1 ,2 ]
Ivancic, S. T. [1 ]
Palastro, J. P. [1 ]
Froula, D. H. [1 ,2 ]
机构
[1] Laser Energet Lab, 250 E River Rd, Rochester, NY 14623 USA
[2] Univ Rochester, Dept Phys & Astron, Rochester, NY 14623 USA
关键词
INVERSE BREMSSTRAHLUNG; LASER PERFORMANCE; TEMPERATURE;
D O I
10.1063/1.5085664
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Optical collective Thomson scattering provides precise density and temperature measurements in numerous plasma-physics experiments. The accuracy of such measurements depends on the core assumption that the underlying electron distribution functions in under-dense laser-produced plasmas are Maxwellian. A statistically based, quantitative analysis of the errors in the measured electron density and temperature is presented when synthetic data calculated using a non-Maxwellian electron distribution function is fit assuming a Maxwellian electron distribution. Such analysis can lead to errors of up to 50% in temperature and 30% in density, in the specific case of super-Gaussian distributions characteristic of inverse bremsstrahlung heating. Including the proper family of non-Maxwellian electron distribution functions, as a fitting parameter, in Thomson-scattering analysis removes the model-dependent errors in the inferred parameters at a minimal cost to the statistical uncertainty. Published under license by AIP Publishing.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Non-Maxwellian Velocity Distribution Functions for Coulombic Systems Out of Equilibrium
    Randol, Brent M.
    ASTROPHYSICAL JOURNAL, 2019, 883 (02):
  • [22] NON-MAXWELLIAN VELOCITY DISTRIBUTION-FUNCTIONS AND INCOHERENT-SCATTERING OF RADAR WAVES IN THE AURORAL IONOSPHERE
    HUBERT, D
    JOURNAL OF ATMOSPHERIC AND TERRESTRIAL PHYSICS, 1984, 46 (6-7): : 601 - 611
  • [23] Whistler waves with electron temperature anisotropy and non-Maxwellian distribution functions
    Malik, M. Usman
    Masood, W.
    Qureshi, M. N. S.
    Mirza, Arshad M.
    AIP ADVANCES, 2018, 8 (05)
  • [24] ON SCATTERING OF LIGHT FROM A NON-MAXWELLIAN PLASMA
    KEGEL, WH
    PHYSICS LETTERS A, 1969, A 29 (11) : 681 - &
  • [25] Measurements of Non-Maxwellian Electron Distribution Functions and Their Effect on Laser Heating
    Milder, A. L.
    Katz, J.
    Boni, R.
    Palastro, J. P.
    Sherlock, M.
    Rozmus, W.
    Froula, D. H.
    PHYSICAL REVIEW LETTERS, 2021, 127 (01)
  • [26] Weibel instability with non-Maxwellian distribution functions
    Zaheer, S.
    Murtaza, G.
    PHYSICS OF PLASMAS, 2007, 14 (02)
  • [27] HIGH-TRANSMISSION 20-CHANNEL POLYCHROMATOR FOR OBSERVING NON-MAXWELLIAN ELECTRON VELOCITY DISTRIBUTIONS IN PLASMAS BY THOMSON SCATTERING
    BARTH, CJ
    APPLIED OPTICS, 1988, 27 (14): : 2981 - 2986
  • [28] Landau damping for non-Maxwellian distribution functions
    Stucchi, Riccardo
    Lauber, Philipp
    JOURNAL OF PLASMA PHYSICS, 2025, 91 (02)
  • [29] PROPAGATION OF ELECTRON WAVES IN A NON-MAXWELLIAN PLASMA
    KAWAI, Y
    NAKAMURA, Y
    ITOH, T
    HARA, T
    KAWABE, T
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1975, 38 (03) : 876 - 881
  • [30] OBSERVATION OF NON-MAXWELLIAN ELECTRON VELOCITY DISTRIBUTION FUNCTION IN ALCATOR-C
    GONDHALEKAR, A
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1979, 24 (08): : 997 - 997