Impact of non-Maxwellian electron velocity distribution functions on inferred plasma parameters in collective Thomson scattering

被引:17
|
作者
Milder, A. L. [1 ,2 ]
Ivancic, S. T. [1 ]
Palastro, J. P. [1 ]
Froula, D. H. [1 ,2 ]
机构
[1] Laser Energet Lab, 250 E River Rd, Rochester, NY 14623 USA
[2] Univ Rochester, Dept Phys & Astron, Rochester, NY 14623 USA
关键词
INVERSE BREMSSTRAHLUNG; LASER PERFORMANCE; TEMPERATURE;
D O I
10.1063/1.5085664
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Optical collective Thomson scattering provides precise density and temperature measurements in numerous plasma-physics experiments. The accuracy of such measurements depends on the core assumption that the underlying electron distribution functions in under-dense laser-produced plasmas are Maxwellian. A statistically based, quantitative analysis of the errors in the measured electron density and temperature is presented when synthetic data calculated using a non-Maxwellian electron distribution function is fit assuming a Maxwellian electron distribution. Such analysis can lead to errors of up to 50% in temperature and 30% in density, in the specific case of super-Gaussian distributions characteristic of inverse bremsstrahlung heating. Including the proper family of non-Maxwellian electron distribution functions, as a fitting parameter, in Thomson-scattering analysis removes the model-dependent errors in the inferred parameters at a minimal cost to the statistical uncertainty. Published under license by AIP Publishing.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Measuring heat flux from collective Thomson scattering with non-Maxwellian distribution functions
    Henchen, R. J.
    Sherlock, M.
    Rozmus, W.
    Katz, J.
    Masson-Laborde, P. E.
    Cao, D.
    Palastro, J. P.
    Froula, D. H.
    PHYSICS OF PLASMAS, 2019, 26 (03)
  • [2] MEASUREMENT OF NON-MAXWELLIAN ELECTRON-DISTRIBUTION FUNCTIONS IN HOT PLASMA AND IMPORTANCE FOR THOMSON SCATTERING DIAGNOSTICS
    SEGRE, SE
    PIERONI, L
    PHYSICS LETTERS A, 1975, A 51 (01) : 25 - 26
  • [3] Numerical computation of Thomson scattering spectra for non-Maxwellian or anisotropic electron distribution functions
    Pastor, I.
    Guasp, J.
    Alvarez-Estrada, R. F.
    Castejon, F.
    NUCLEAR FUSION, 2012, 52 (12)
  • [4] Effects of non-Maxwellian (super-Gaussian) electron velocity distribution on the spectrum of Thomson scattering
    Zheng, J
    Yu, CX
    Zheng, ZJ
    PHYSICS OF PLASMAS, 1997, 4 (07) : 2736 - 2740
  • [5] Recovering non-Maxwellian particle velocity distribution functions from collective Thomson-scattered spectra
    Foo, B. C.
    Schaeffer, D. B.
    Heuer, P. V.
    AIP ADVANCES, 2023, 13 (11)
  • [6] Statistical analysis of non-Maxwellian electron distribution functions measured with angularly resolved Thomson scattering
    Milder, A. L.
    Katz, J.
    Boni, R.
    Palastro, J. P.
    Sherlock, M.
    Rozmus, W.
    Froula, D. H.
    PHYSICS OF PLASMAS, 2021, 28 (08)
  • [7] NON-MAXWELLIAN ELECTRON VELOCITY DISTRIBUTIONS OBSERVED WITH THOMSON SCATTERING IN THE TORTUR TOKAMAK
    VANLAMMEREN, ACAP
    BARTH, CJ
    VANEST, QC
    SCHULLER, FC
    NUCLEAR FUSION, 1992, 32 (04) : 655 - 665
  • [8] OBSERVATION OF NON-MAXWELLIAN ELECTRON-DISTRIBUTION FUNCTIONS IN ALCATOR DEVICE BY MEANS OF THOMSON SCATTERING AND THEIR INTERPRETATION
    PIERONI, L
    SEGRE, SE
    PHYSICAL REVIEW LETTERS, 1975, 34 (15) : 928 - 930
  • [9] Detecting non-Maxwellian electron velocity distributions at JET by high resolution Thomson scattering
    Beausang, K. V.
    Prunty, S. L.
    Scannell, R.
    Beurskens, M. N.
    Walsh, M. J.
    de La Luna, E.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2011, 82 (03):
  • [10] MAXWELLIAN AND NON-MAXWELLIAN ELECTRON VELOCITY DISTRIBUTION-FUNCTIONS IN N2
    PRAMOD, D
    NATH, N
    BALUJA, NKL
    INDIAN JOURNAL OF PURE & APPLIED PHYSICS, 1994, 32 (06) : 451 - 455