A deep selective learning network for cross-domain recommendation

被引:7
|
作者
Liu, Huiting [1 ,2 ]
Liu, Qian [1 ,2 ]
Li, Peipei [3 ]
Zhao, Peng [1 ,2 ]
Wu, Xindong [4 ,5 ]
机构
[1] Anhui Univ, Key Lab Intelligent Comp & Signal Proc, Minist Educ, Hefei 230601, Anhui, Peoples R China
[2] Anhui Univ, Sch Comp Sci & Technol, Hefei 230601, Anhui, Peoples R China
[3] Hefei Univ Technol, Sch Comp Sci & Informat Engn, Hefei 230601, Peoples R China
[4] Hefei Univ Technol, Res Inst Big Knowledge, Hefei 230601, Anhui, Peoples R China
[5] Mininglamp Acad Sci, Mininglamp Technol, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Recommender system; Cross-domain recommendation; Transfer learning; REVIEWS; SYSTEM;
D O I
10.1016/j.asoc.2022.109160
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the past two decades, recommendation system has been successfully applied to many e-commerce companies and is a ubiquitous part of today online entertainment. However, many single-domain recommendations suffer from the sparsity problems due to a lack of sufficient interactive data. In fact, user behaviors from different domains are usually relevant. Therefore, cross-domain ideas have been proposed to help alleviate the data sparsity issue in traditional single-domain recommender systems. Motivated by this, we design a deep selective learning network (DSLN) in this paper, for the scenario when domains have minimum or no common users DSLN firstly exploits reviews to profile the preference of users and characteristic of items. Then it selects useful user or item information from the auxiliary domain and transfers it to the target domain to solve the negative transfer problem, even though there may be no overlapping users or items between these two domains. In DSLN model, the selection of useful information is realized by the de-noising auto-encoder (DAE), which is shared between the auxiliary and target domains. By minimizing the reconstruction error of the DAE, on the one hand, only the useful information can be selected from the auxiliary domain; on the other hand, the latent representation of users and items in two domains can be learned. Our experiments on three cross-domain scenarios with different sparsity of Amazon review dataset show that, our proposed model gains 0.58% to 18.16% relative improvement compared to single-domain recommendation models, and from 1.05% to 19.4% relative improvement compared to cross-domain recommendation models. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Neural Attentive Cross-Domain Recommendation
    Rafailidis, Dimitrios
    Crestani, Fabio
    PROCEEDINGS OF THE 2019 ACM SIGIR INTERNATIONAL CONFERENCE ON THEORY OF INFORMATION RETRIEVAL (ICTIR'19), 2019, : 164 - 171
  • [42] Cross-domain recommendation with user personality
    Wang, Hanfei
    Zuo, Yuan
    Li, Hong
    Wu, Junjie
    KNOWLEDGE-BASED SYSTEMS, 2021, 213 (213)
  • [43] Cross-Domain Recommendation with Adversarial Examples
    Yan, Haoran
    Zhao, Pengpeng
    Zhuang, Fuzhen
    Wang, Deqing
    Liu, Yanchi
    Sheng, Victor S.
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS (DASFAA 2020), PT III, 2020, 12114 : 573 - 589
  • [44] Cross-Domain Recommendation Method in Tourism
    QingQi
    JianCao
    Tan, Yudong
    Xiao, Quanwu
    PROCEEDINGS OF THE 2018 IEEE INTERNATIONAL CONFERENCE ON PROGRESS IN INFORMATICS AND COMPUTING (PIC), 2018, : 106 - 112
  • [45] Contrastive Cross-domain Recommendation in Matching
    Xie, Ruobing
    Liu, Qi
    Wang, Liangdong
    Liu, Shukai
    Zhang, Bo
    Lin, Leyu
    PROCEEDINGS OF THE 28TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2022, 2022, : 4226 - 4236
  • [46] AMT-CDR: A Deep Adversarial Multi-Channel Transfer Network for Cross-Domain Recommendation
    Lu, Kezhi
    Zhang, Qian
    Hughes, Danny
    Zhang, Guangquan
    Lu, Jie
    ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2024, 15 (04)
  • [47] DARec: Deep Domain Adaptation for Cross-Domain Recommendation via Transferring Rating Patterns
    Yuan, Feng
    Yao, Lina
    Benatallah, Boualem
    PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 4227 - 4233
  • [48] DCDIR: A Deep Cross-Domain Recommendation System for Cold Start Users in Insurance Domain
    Bi, Ye
    Song, Liqiang
    Yao, Mengqiu
    Wu, Zhenyu
    Wang, Jianming
    Xiao, Jing
    PROCEEDINGS OF THE 43RD INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '20), 2020, : 1661 - 1664
  • [49] Cross-Domain Deep Code Search with Meta Learning
    Chai, Yitian
    Zhang, Hongyu
    Shen, Beijun
    Gu, Xiaodong
    2022 ACM/IEEE 44TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING (ICSE 2022), 2022, : 487 - 498
  • [50] Deep Transfer Learning for Cross-domain Activity Recognition
    Wang, Jindong
    Zheng, Vincent W.
    Chen, Yiqiang
    Huang, Meiyu
    PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON CROWD SCIENCE AND ENGINEERING (ICCSE 2018), 2018,