Iterative schemes for optimal control of Volterra integral equations

被引:16
|
作者
Belbas, SA [1 ]
机构
[1] Univ Alabama, Dept Math, Tuscaloosa, AL 35487 USA
关键词
Volterra integral equations; optimal control; iterative schemes; weighted norms; exponential sums;
D O I
10.1016/S0362-546X(98)00144-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The problem of optimal control of systems governed by Volterra integral equations is solved using a method of variational equations. For certain particular problems of controlled Volterra equations, with a special type of constraints on the control, necessary conditions for optimality can be obtained using a method of variational equations. The method can lead to, under certain conditions, constructive schemes for the iterative solution of the optimal control problem. Several iterative schemes for solving optimal control problems for Volterra integral equations are presented and the conditions that can guarantee convergence of the methods are analyzed.
引用
收藏
页码:57 / 79
页数:23
相关论文
共 50 条
  • [21] Singular Control of Stochastic Volterra Integral Equations
    Nacira Agram
    Saloua Labed
    Bernt Øksendal
    Samia Yakhlef
    Acta Mathematica Scientia, 2022, 42 : 1003 - 1017
  • [22] SINGULAR CONTROL OF STOCHASTIC VOLTERRA INTEGRAL EQUATIONS
    Nacira AGRAM
    Saloua LABED
    Bernt ?KSENDAL
    Samia YAKHLEF
    Acta Mathematica Scientia, 2022, (03) : 1003 - 1017
  • [23] SINGULAR CONTROL OF STOCHASTIC VOLTERRA INTEGRAL EQUATIONS
    Agram, Nacira
    Labed, Saloua
    Oksendal, Bernt
    Yakhlef, Samia
    ACTA MATHEMATICA SCIENTIA, 2022, 42 (03) : 1003 - 1017
  • [24] Optimal control in unobservable integral Volterra systems
    Basin, MV
    Guzman, IRV
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2002, 339 (01): : 13 - 27
  • [26] ITERATIVE CONTINUOUS COLLOCATION METHOD FOR SOLVING NONLINEAR VOLTERRA INTEGRAL EQUATIONS
    Rouibah, K.
    Bellour, A.
    Lima, P.
    Rawashdeh, E.
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2022, 46 (04): : 635 - 648
  • [27] A fast iterative method for discretized Volterra-Fredholm integral equations
    Cardone, A
    Messina, E
    Russo, E
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 189 (1-2) : 568 - 579
  • [28] VOLTERRA INTEGRAL-EQUATIONS IN ABSTRACT CONES AND MONOTONE ITERATIVE TECHNIQUES
    SHENDGE, GR
    JOURNAL OF INTEGRAL EQUATIONS, 1985, 9 (02): : 161 - 168
  • [29] Iterative numerical method for pantograph type fuzzy Volterra integral equations
    Bica, Alexandru Mihai
    Satmari, Zoltan
    FUZZY SETS AND SYSTEMS, 2022, 443 : 262 - 285
  • [30] The barycentric rational predictor-corrector schemes for Volterra integral equations
    Abdi, A.
    Berrut, J. -P.
    Podhaisky, H.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 440