Proteomics Improves the Prediction of Burns Mortality: Results from Regression Spline Modeling

被引:16
|
作者
Finnerty, Celeste C. [1 ,2 ,3 ,6 ]
Ju, Hyunsu [2 ]
Spratt, Heidi [2 ,3 ]
Victor, Sundar [2 ]
Jeschke, Marc G. [4 ]
Hegde, Sachin [1 ]
Bhavnani, Suresh K. [2 ,5 ]
Luxon, Bruce A. [2 ,3 ]
Brasier, Allan R. [2 ,3 ]
Herndon, David N. [1 ,6 ]
机构
[1] Univ Texas Med Branch, Dept Surg, Galveston, TX 77555 USA
[2] Univ Texas Med Branch, Inst Translat Sci, Galveston, TX USA
[3] Univ Texas Med Branch, Sealy Ctr Mol Med, Galveston, TX USA
[4] Univ Toronto, Toronto, ON, Canada
[5] Univ Texas Houston, Sch Biomed Informat, Houston, TX USA
[6] Shriners Hosp Children, Galveston, TX 77550 USA
来源
关键词
mortality; stress; pediatrics; cytokines; INHALATION INJURY; CHILDREN; AGE;
D O I
10.1111/j.1752-8062.2012.00412.x
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Prediction of mortality in severely burned patients remains unreliable. Although clinical covariates and plasma protein abundance have been used with varying degrees of success, the triad of burn size, inhalation injury, and age remains the most reliable predictor. We investigated the effect of combining proteomics variables with these three clinical covariates on prediction of mortality in burned children. Serum samples were collected from 330 burned children (burns covering >25% of the total body surface area) between admission and the time of the first operation for clinical chemistry analyses and proteomic assays of cytokines. Principal component analysis revealed that serum protein abundance and the clinical covariates each provided independent information regarding patient survival. To determine whether combining proteomics with clinical variables improves prediction of patient mortality, we used multivariate adaptive regression splines, because the relationships between analytes and mortality were not linear. Combining these factors increased overall outcome prediction accuracy from 52% to 81% and area under the receiver operating characteristic curve from 0.82 to 0.95. Thus, the predictive accuracy of burns mortality is substantially improved by combining protein abundance information with clinical covariates in a multivariate adaptive regression splines classifier, a model currently being validated in a prospective study. Clin Trans Sci 2012; Volume #: 17
引用
收藏
页码:243 / 249
页数:7
相关论文
共 50 条
  • [21] Support vector machine versus logistic regression modeling for prediction of hospital mortality in critically ill patients with haematological malignancies
    T Verplancke
    S Van Looy
    D Benoit
    S Vansteelandt
    P Depuydt
    F De Turck
    J Decruyenaere
    BMC Medical Informatics and Decision Making, 8
  • [22] Mortality risk prediction in elderly patients with cardiogenic shock: results from the CardShock study
    Hongisto, Mari
    Lassus, Johan
    Tarvasmaki, Tuukka
    Sionis, Alessandro
    San Rosello, Jordi
    Tolppanen, Heli
    Kataja, Anu
    Jantti, Toni
    Sabell, Tuija
    Lindholm, Matias Greve
    Banaszewski, Marek
    Silva Cardoso, Jose
    Parissis, John
    Di Somma, Salvatore
    Carubelli, Valentina
    Jurkko, Raija
    Masip, Josep
    Harjola, Veli-Pekka
    ESC HEART FAILURE, 2021, 8 (02): : 1398 - 1407
  • [23] Comparing machine learning techniques for neonatal mortality prediction: insights from a modeling competition
    Sullivan, Brynne A.
    Moreira, Alvaro G.
    Mcadams, Ryan M.
    Knake, Lindsey A.
    Husain, Ameena
    Qiu, Jiaxing
    Mudireddy, Avinash
    Majeedi, Abrar
    Shalish, Wissam
    Lake, Douglas E.
    Vesoulis, Zachary A.
    PEDIATRIC RESEARCH, 2024,
  • [24] Quantitative prediction of integrase inhibitor resistance from genotype through consensus linear regression modeling
    Koen Van der Borght
    Ann Verheyen
    Maxim Feyaerts
    Liesbeth Van Wesenbeeck
    Yvan Verlinden
    Elke Van Craenenbroeck
    Herman van Vlijmen
    Virology Journal, 10
  • [25] Quantitative prediction of integrase inhibitor resistance from genotype through consensus linear regression modeling
    Van der Borght, Koen
    Verheyen, Ann
    Feyaerts, Maxim
    Van Wesenbeeck, Liesbeth
    Verlinden, Yvan
    Van Craenenbroeck, Elke
    van Vlijmen, Herman
    VIROLOGY JOURNAL, 2013, 10
  • [26] Exercise age, as derived from exercise testing, improves prediction of overall mortality compared to chronological age
    Herb, S.
    Cramer, P. C.
    Menon, V.
    Wu, Y.
    Rouphael, C.
    Guy, T.
    Cho, L.
    Jaber, W. A.
    EUROPEAN HEART JOURNAL, 2017, 38 : 257 - 258
  • [27] EXPLOITING THE DYNAMICS OF GLUCOSE RESPONSE FROM ORAL GLUCOSE TOLERANCE TESTING (OGTT) IMPROVES PREDICTION OF MORTALITY
    Varadhan, R.
    Metter, E.
    Windham, B.
    Ferrucci, L.
    GERONTOLOGIST, 2008, 48 : 248 - 248
  • [28] Prediction of anemia in cancer patients: results of logistic regression modeling and validation based on the European Cancer Anaemia Survey (ECAS)
    Van Belle, Simon
    Ludwig, Heinz
    Birgegard, Gunnar
    Gascen, Pere
    ANNALS OF ONCOLOGY, 2004, 15 : 123 - 123
  • [29] Renal function improves mortality prediction in acute pulmonary embolism: results of a multicentre cohort study with external validation in the RIETE registry
    Chopard, R.
    Jimenez, D.
    Serzian, G.
    Ecarnot, F.
    Falvo, N.
    Kalbacher, E.
    Bonnet, B.
    Capellier, G.
    Schiele, F.
    Bertoletti, L.
    Monreal, M.
    Meneveau, N.
    EUROPEAN HEART JOURNAL, 2020, 41 : 2239 - 2239
  • [30] Comparison of three coronary bypass mortality prediction models: Results from the national cardiovascular network
    Peterson, ED
    Mauldin, PD
    Muhlbaier, LH
    DeLong, ER
    Lanzilotta, MJ
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 1997, 29 (02) : 64170 - 64170