Application of Petrov-galerkin method in stabilization solution of advection-diffusion-reaction unidimensional problems

被引:0
|
作者
Garzon Alvarado, Diego Alexander [1 ]
Goleono Uruena, Carlos Humberto [1 ]
Duque Daza, Carlos Alberto [1 ]
机构
[1] Univ Nacl Colombia, Bogota, Colombia
关键词
Petrov-Galerkin; advection; diffusion; perturbation functions; unstable solutions; FINITE-ELEMENT METHODS; COMPUTATIONAL FLUID-DYNAMICS; EQUATIONS; FORMULATION;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper examines the Streamline Upwind Petrov Galerkin method as a stabilizing technique for the numerical solution of differential equations of advection-diffusion-reaction; it analizes the method taking into account the non self-adjoint nature of the convective diferential operator and the necessary transformations for the solution stabilization through the elimination of non self-adjoint effect induced by the convective term. Presents six different numerical examples, which include problems of variable coefficients, high convective problems, highly reactive systems and transitional solutions. This method presents an excellent performance of this stabilization technique for all the cases mentioned above, except for the problems with strong reactives terms.
引用
收藏
页码:73 / 90
页数:18
相关论文
共 50 条
  • [21] A comparison between characteristic lines and streamline upwind Petrov-Galerkin method for advection dominated problems
    Humberto Galeano, Carlos
    Alexander Garzon, Diego
    Miguel Mantilla, Juan
    REVISTA FACULTAD DE INGENIERIA-UNIVERSIDAD DE ANTIOQUIA, 2010, (52): : 134 - 146
  • [22] The nearly-optimal Petrov-Galerkin method for convection-diffusion problems
    Nesliturk, A
    Harari, I
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2003, 192 (22-24) : 2501 - 2519
  • [23] A stabilized element-free Galerkin method for the advection-diffusion-reaction problem
    Li, Xiaolin
    APPLIED MATHEMATICS LETTERS, 2023, 146
  • [24] Meshless local Petrov-Galerkin method for the solution of nonlinear boundary value problems
    Hu, De-An
    Long, Shu-Yao
    Han, Xu
    Hunan Daxue Xuebao/Journal of Hunan University Natural Sciences, 2007, 34 (02): : 33 - 36
  • [25] Application of Petrov-Galerkin finite element method to nonlinear transient diffusion-convection-reaction system
    Park, SK
    CHEMICAL ENGINEERING COMMUNICATIONS, 1995, 139 : 159 - 200
  • [26] Application of direct meshless local Petrov-Galerkin method for numerical solution of stochastic elliptic interface problems
    Abbaszadeh, Mostafa
    Dehghan, Mehdi
    Khodadadian, Amirreza
    Heitzinger, Clemens
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2022, 38 (05) : 1271 - 1292
  • [27] AN INTERPOLATING LOCAL PETROV-GALERKIN METHOD FOR POTENTIAL PROBLEMS
    Chen, L.
    Liu, C.
    Ma, H. P.
    Cheng, Y. M.
    INTERNATIONAL JOURNAL OF APPLIED MECHANICS, 2014, 6 (01)
  • [28] An ADI Petrov-Galerkin Method with Quadrature for Parabolic Problems
    Bialecki, B.
    Ganesh, M.
    Mustapha, K.
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2009, 25 (05) : 1129 - 1148
  • [29] A parameter-free dynamic diffusion method for advection-diffusion-reaction problems
    Valli, Andrea M. P.
    Almeida, Regina C.
    Santos, Isaac P.
    Catabriga, Lucia
    Malta, Sandra M. C.
    Coutinho, Alvaro L. G. A.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (01) : 307 - 321
  • [30] Petrov-Galerkin methods for nonlinear reaction-diffusion equations
    Wang, YM
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1998, 69 (1-2) : 123 - 145