New Approach to Pell and Pell-Lucas Sequences

被引:1
|
作者
Yagmur, Tulay [1 ]
机构
[1] Aksaray Univ, Dept Math, TR-68100 Aksaray, Turkey
来源
KYUNGPOOK MATHEMATICAL JOURNAL | 2019年 / 59卷 / 01期
关键词
Pell sequence; Pell-Lucas sequence;
D O I
10.5666/KMJ.2019.59.1.23
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we first define generalizations of Pell and Pell-Lucas sequences by the recurrence relations p(n) = 2ap(n-1) + (b - a(2))p(n-2) and q(n) = 2aq(n-1) + (b - a(2))q(n-2) with initial conditions p(0) = 0, p(1) = 1, and q(0) = 2, q(1) = 2a, respectively. We give generating functions and Binet's formulas for these sequences. Also, we obtain some identities of these sequences.
引用
收藏
页码:23 / 34
页数:12
相关论文
共 50 条
  • [31] Pell and Pell-Lucas Numbers as Product of Two Repdigits
    Erduvan, F.
    Keskin, R.
    MATHEMATICAL NOTES, 2022, 112 (5-6) : 861 - 871
  • [32] PELL AND PELL-LUCAS NUMBERS AS SUMS OF THREE REPDIGITS
    Adegbindin, C. A.
    Luca, F.
    Togbe, A.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2021, 90 (01): : 7 - 25
  • [33] Repdigits as Products of Consecutive Pell or Pell-Lucas Numbers
    Bravo, Eric F.
    Bravo, Jhon J.
    IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2024, 19 (01): : 63 - 70
  • [34] Pell numbers, Pell-Lucas numbers and modular group
    Mushtaq, Q.
    Hayat, U.
    ALGEBRA COLLOQUIUM, 2007, 14 (01) : 97 - 102
  • [35] HYPERBOLIC ARCTANGENT SUMMATIONS OF PELL AND PELL-LUCAS POLYNOMIALS
    Guo, Dongwei
    Chu, Wenchang
    PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2024, 115 (129): : 77 - 100
  • [36] REPDIGITS AS DIFFERENCE OF TWO PELL OR PELL-LUCAS NUMBERS
    Erduvan, Fatih
    Keskin, Refik
    KOREAN JOURNAL OF MATHEMATICS, 2023, 31 (01): : 63 - 73
  • [37] Pell and Pell-Lucas numbers as difference of two repdigits
    Edjeou, Bilizimbeye
    Faye, Bernadette
    AFRIKA MATEMATIKA, 2023, 34 (04)
  • [38] A Pell-Lucas Computation of Pi
    Ohtsuka, Hideyuki
    AMERICAN MATHEMATICAL MONTHLY, 2020, 127 (07): : 666 - 666
  • [39] Gaussian Pell-Lucas Polynomials
    Yagmur, Tulay
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2019, 10 (04): : 673 - 679
  • [40] Inverse tangent series involving pell and pell-lucas polynomials
    Guo, Dongwei
    Chu, Wenchang
    MATHEMATICA SLOVACA, 2022, 72 (04) : 869 - 884