Levy Laplacians and instantons on manifolds

被引:3
|
作者
Volkov, Boris O. [1 ]
机构
[1] Steklov Math Inst, Ul Gubkina 8, Moscow 119991, Russia
基金
俄罗斯科学基金会;
关键词
Levy Laplacian; Yang-Mills equations; instantons; infinite-dimensional manifold; YANG-MILLS FIELDS; RANDOM HOLONOMY;
D O I
10.1142/S0219025720500083
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The equivalence of the anti-selfduality Yang-Mills equations on the four-dimensional orientable Riemannian manifold and the Laplace equations for some infinite-dimensional Laplacians is proved. A class of modified Levy Laplacians parameterized by the choice of a curve in the group SO(4) is introduced. It is shown that a connection is an instanton (a solution of the anti-selfduality Yang-Mills equations) if and only if the parallel transport generalized by this connection is a solution of the Laplace equations for some three modified Levy Laplacians from this class.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Levy Laplacians and instantons
    Volkov, B. O.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2015, 290 (01) : 210 - 222
  • [2] Levy Laplacians, Holonomy Group and Instantons on 4-Manifolds
    Volkov, Boris O.
    POTENTIAL ANALYSIS, 2023, 59 (03) : 1381 - 1397
  • [3] FEYNMAN FORMULAS FOR EVOLUTION EQUATIONS WITH LEVY LAPLACIANS ON MANIFOLDS
    Accardi, L.
    Smolyanov, O. G.
    QUANTUM PROBABILITY AND INFINITE DIMENSIONAL ANALYSIS, PROCEEDINGS, 2007, 20 : 13 - +
  • [4] Lévy Laplacians, Holonomy Group and Instantons on 4-Manifolds
    Boris O. Volkov
    Potential Analysis, 2023, 59 : 1381 - 1397
  • [5] Feynman formulas for evolution equations with Levy Laplacians on infinite-dimensional manifolds
    L. Accardi
    O. G. Smolyanov
    Doklady Mathematics, 2006, 73 : 252 - 257
  • [6] Feynman formulas for evolution equations with Levy Laplacians on infinite-dimensional manifolds
    Accardi, L.
    Smolyanov, O. G.
    DOKLADY MATHEMATICS, 2006, 73 (02) : 252 - 257
  • [7] Lévy Laplacians and instantons
    B. O. Volkov
    Proceedings of the Steklov Institute of Mathematics, 2015, 290 : 210 - 222
  • [8] Modified Levy Laplacians
    Gomez, F.
    Smolyanov, O. G.
    RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2008, 15 (01) : 45 - 50
  • [9] LEVY LAPLACIANS AND ANNIHILATION PROCESS
    Volkov, B. O.
    UCHENYE ZAPISKI KAZANSKOGO UNIVERSITETA-SERIYA FIZIKO-MATEMATICHESKIE NAUKI, 2018, 160 (02): : 399 - 409
  • [10] Classical and nonclassical levy Laplacians
    L. Accardi
    O. G. Smolyanov
    Doklady Mathematics, 2007, 76 : 801 - 805