Ion-channel blocker sensitivity of voltage-gated calcium-channel homologue Cch1 in Saccharomyces cerevisiae

被引:46
|
作者
Teng, Jinfeng [1 ,2 ]
Goto, Rika [1 ]
Iida, Kazuko [3 ]
Kojima, Itaru [2 ]
Iida, Hidetoshi [1 ,4 ]
机构
[1] Tokyo Gakugei Univ, Dept Biol, Koganei, Tokyo 1848501, Japan
[2] Gunma Univ, Inst Mol & Cellular Regulat, Cell Biol Lab, Gunma 3718510, Japan
[3] Tokyo Metropolitan Inst Med Sci, Biomembrane Signaling Project 2, Bunkyo Ku, Tokyo 1138613, Japan
[4] Natl Inst Nat Sci, Okazaki Inst Integrat Biosci, Dept Bioenvironm Sci, Okazaki, Aichi 4448787, Japan
来源
MICROBIOLOGY-SGM | 2008年 / 154卷
关键词
D O I
10.1099/mic.0.2008/021089-0
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The Cch1 protein of the yeast Saccharomyces cerevisiae is a homologue of the pore-forming x(1) subunit of mammalian voltage-gated Ca2+, channels (VGCCs), and it constitutes a high-affinity Ca2+-influx system with the Mid1 protein in this organism. Here, we characterized the kinetic property of a putative Cch1-Mid1 Ca2+ channel overexpressed in S. cerevisiae cells, and showed that the L-type VGCC blockers nifedipine and verapamil partially inhibited Cch1-Mid1 activity, but typical P/Q-, N-, R- and T-type VGCC blockers did not inhibit activity. In contrast, a third L-type VGCC blocker, diltiazem, increased Cch1-Mid1 activity. Diltiazem did not increase Ca2+ uptake in the cch1 Delta and mid1 Delta single mutants and the cch1 Delta mid1 Delta double mutant, indicating that the diltiazem-induced increase in Ca2+ uptake is completely dependent on Cch1-Mid1. These results suggest that Cch1 is pharmacologically similar to L-type VGCCs, but the interactions between Cch1 and the L-type VGCC blockers are more complicated than expected.
引用
收藏
页码:3775 / 3781
页数:7
相关论文
共 50 条
  • [21] Genetic analysis of the regulation of the voltage-gated calcium channel homolog Cch1 by the γ subunit homolog Ecm7 and cortical ER protein Scs2 in yeast
    Kato, Takafumi
    Kubo, Aya
    Nagayama, Tatsuya
    Kume, Shinichiro
    Tanaka, Chikara
    Nakayama, Yoshitaka
    Iida, Kazuko
    Iida, Hidetoshi
    PLOS ONE, 2017, 12 (07):
  • [22] Architecture of the inner pore of a voltage-gated calcium channel
    Zhen, XG
    Xie, C
    Yang, J
    BIOPHYSICAL JOURNAL, 2004, 86 (01) : 186A - 186A
  • [23] Cardiac voltage-gated calcium channel macromolecular complexes
    Rougier, Jean-Sebastien
    Abriel, Hugues
    BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH, 2016, 1863 (07): : 1806 - 1812
  • [24] Voltage-gated calcium channel dependent intracellular signaling
    Kobrinsky, E.
    Thomas, S.
    Soldatov, N.
    FEBS JOURNAL, 2007, 274 : 146 - 146
  • [25] DESIGN OF A FUNCTIONAL CALCIUM-CHANNEL PROTEIN - INFERENCES ABOUT AN ION CHANNEL-FORMING MOTIF DERIVED FROM THE PRIMARY STRUCTURE OF VOLTAGE-GATED CALCIUM CHANNELS
    GROVE, A
    TOMICH, JM
    IWAMOTO, T
    MONTAL, M
    PROTEIN SCIENCE, 1993, 2 (11) : 1918 - 1930
  • [26] Immunolocalization of voltage-gated calcium channel α1 subunits in the chinchilla cochlea
    Lopez, I
    Ishiyama, G
    Acuna, D
    Ishiyama, A
    Baloh, RW
    CELL AND TISSUE RESEARCH, 2003, 313 (02) : 177 - 186
  • [27] Therapeutical application of voltage-gated calcium channel modulators
    Kochegarov, AA
    EXPERT OPINION ON THERAPEUTIC PATENTS, 2002, 12 (02) : 243 - 287
  • [28] The Voltage-Gated Calcium Channel γ Subunits: A Review of the Literature
    John Logan Black
    Journal of Bioenergetics and Biomembranes, 2003, 35 : 649 - 660
  • [29] The voltage-gated calcium channel γ subunits:: A review of the literature
    Black, JL
    JOURNAL OF BIOENERGETICS AND BIOMEMBRANES, 2003, 35 (06) : 649 - 660
  • [30] Voltage-gated calcium channel mutations andabsence epilepsy
    Noebels, Jeffrey L.
    EPILEPSIA, 2010, 51 : 61 - 61