Stability conditions and moduli spaces for Kuznetsov components of Gushel-Mukai varieties

被引:6
|
作者
Perry, Alexander [1 ]
Pertusi, Laura
Zhao, Xiaolei
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48108 USA
基金
美国国家科学基金会;
关键词
FANO MANIFOLDS; CATEGORIES; THREEFOLDS; CLASSIFICATION; INTERSECTIONS; FIBRATIONS;
D O I
10.2140/gt.2022.26.3055
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the existence of Bridgeland stability conditions on the Kuznetsov com-ponents of Gushel-Mukai varieties, and describe the structure of moduli spaces of Bridgeland semistable objects in these categories in the even-dimensional case. As applications, we construct a new infinite series of unirational locally complete families of polarized hyperkahler varieties of K3 type, and characterize Hodge-theoretically when the Kuznetsov component of an even-dimensional Gushel-Mukai variety is equivalent to the derived category of a K3 surface.
引用
收藏
页码:3055 / 3121
页数:68
相关论文
共 15 条