The crystal structure of mineral magadiite, Na2Si14O28(OH)2•8H2O

被引:4
|
作者
Marler, Bernd [1 ]
Krysiak, Yasar [2 ]
Grosskreuz, Isabel [1 ]
Gies, Hermann [1 ]
Kolb, Ute [3 ]
机构
[1] Univ Bochum, Inst Geol Mineral & Geophys, D-44801 Bochum, Germany
[2] Leibniz Univ Hannover, Inst Inorgan Chem, Callinstr 9, D-30167 Hannover, Germany
[3] Johannes Gutenberg Univ Mainz, Inst Inorgan Chem & Analyt Chem, D-55122 Mainz, Germany
关键词
Sodium silicate; structure determination; characterization; layer silicate; Rietveld; LAYERED SILICATE MAGADIITE; TOPOTACTIC CONDENSATION; MODEL STRUCTURE; POWDER DATA; X-RAY; CONVERSION; INTERCALATION; ZEOLITE; OCTOSILICATE; PRECURSOR;
D O I
10.2138/am-2022-8156
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Magadiite from Lake Magadi was structurally analyzed based on X-ray powder diffraction data. The idealized chemical composition of magadiite is Na-16[Si112O224(OH)(16)]center dot 64H(2)O per unit cell. The XRD powder diffraction pattern was indexed in orthorhombic symmetry with lattice parameters a(0) = 10.5035(9) angstrom, b(0) = 10.0262(9) angstrom, and c(0) = 61.9608(46) angstrom. The crystal structure was solved from a synthetic magadiite sample in a complex process using 3D electron diffraction combined with model building as presented in an additional paper. A Rietveld refinement of this structure model performed on a magadiite mineral sample in space group F2dd (No. 43) converged to residual values of R-Bragg = 0.031 and R-F = 0.026 confirming the structure model. Physico-chemical characterization using solid-state NMR spectroscopy, SEM, TG-DTA, and DRIFT spectroscopy further confirmed the structure. The structure of magadiite contains two enantiomorphic silicate layers of, so far, unknown topology. The dense layers exhibit no porosity or micro-channels and have a thickness of 11.5 angstrom (disregarding the van der Waals radii of the terminal O atoms) and possess a silicon Q(4) to Q(3) ratio of 2.5. 16 out of 32 terminal silanol groups are protonated, and the remaining groups compensate for the charge of the hydrated sodium cations. Bands of edge-sharing [Na(H2O)(6/1.5)] octahedra are intercalated between the silicate layers extending along (110) and (110). The water molecules are hydrogen bonded to terminal silanol groups with O center dot center dot center dot O distances of 2.54-2.91 angstrom. The structure of magadiite is slightly disordered, typical for hydrous layer silicates (HLS), which possess only weak interactions between neighboring layers. In this respect, the result of the structure refinement represents a somewhat idealized structure. Nevertheless, the natural magadiite possesses a higher degree of structural order than any synthetic magadiite sample. The structure analysis also revealed the presence of strong intra-layer hydrogen bonds between the terminal O atoms (silanol/siloxy groups), confirmed by H-1 MAS NMR and DRIFT spectroscopy. The surface zone of the silicate layers, as well as the interlayer region containing the [Na(H2O)(6/1.5)] octahedra, are closely related to the structure of Na-RUB-18.
引用
收藏
页码:2101 / 2110
页数:10
相关论文
共 50 条
  • [41] Refined crystal structure of lovozerite Na2CaZr[Si6O12(OH,O)6] • H2O
    Yamnova, NA
    Egorov-Tismenko, YK
    Pekov, IV
    CRYSTALLOGRAPHY REPORTS, 2001, 46 (06) : 937 - 941
  • [42] Synthesis and Crystal Structure of a Ternary Complex:[Ni(phen)2(pmal)]·8H2O
    SNN Ya-Guang
    Chinese Journal of Structural Chemistry, 2006, (10) : 1265 - 1269
  • [43] Synthesis and crystal structure of sodium isopolyvanadate [Na2(H2O)8]2H2[V10O28] · 4H2O
    G. Z. Kaziev
    A. V. Oreshkina
    S. Holguin Quinones
    A. F. Stepnova
    V. E. Zavodnik
    Antonio de Ita
    D. A. Alekseev
    Russian Journal of Coordination Chemistry, 2010, 36 : 887 - 890
  • [44] Synthesis and Crystal Structure of Sodium Isopolyvanadate [Na2(H2O)8]2H2[V10O28] • 4H2O
    Kaziev, G. Z.
    Oreshkina, A. V.
    Quinones, S. Holguin
    Stepnova, A. F.
    Zavodnik, V. E.
    de Ita, Antonio
    Alekseev, D. A.
    RUSSIAN JOURNAL OF COORDINATION CHEMISTRY, 2010, 36 (12) : 887 - 890
  • [45] Thermal behavior of borax, Na2B4O5(OH)4<middle dot>8H2O
    Nishiyasu, Wataru
    Kyono, Atsushi
    AMERICAN MINERALOGIST, 2024, 109 (03) : 533 - 539
  • [46] New Quaternary Alkali-Metal Hypodiphosphate Hydrates: Preparation, Crystal Structure, Vibrational Spectrum, and Thermal Behavior of K4P2O6•8H2O and Na2K2P2O6•8H2O in Comparison to Na4P2O6•10H2O
    Gjikaj, Mimoza
    Wu, Peng
    Brockner, Wolfgang
    ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE, 2012, 638 (12-13): : 2144 - 2149
  • [47] The crystal structure determination and redefinition of matulaite, Fe3+Al7(PO4)4(PO3OH)2(OH)8(H2O)8•8H2O
    Kampf, A. R.
    Mills, S. J.
    Rumsey, M. S.
    Spratt, J.
    Favreau, G.
    MINERALOGICAL MAGAZINE, 2012, 76 (03) : 517 - 534
  • [48] Thermoanalytical study of the minerals apophyllite-(KF) KCa4Si8O20F•8H2O and apophyllite-(KOH) KCa4Si8O20(F,OH)•8H2O
    Frost, Ray L.
    Xi, Yunfei
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2013, 112 (02) : 607 - 614
  • [49] X-ray structural characterization of [Eu(H2O)8]2[V10O28]•8H2O
    Naruke, H
    Yamase, T
    Kaneko, M
    BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, 1999, 72 (08) : 1775 - 1779
  • [50] Synthesis and crystal structure of (H3O)2{(Na2(OH)CB[5])2[HV4O12]}Cl • 14H2O
    Kovalenko, E. A.
    Naumov, D. Yu.
    Fedin, V. P.
    RUSSIAN JOURNAL OF COORDINATION CHEMISTRY, 2011, 37 (02) : 137 - 142