On the current distribution at the channel - rib scale in polymer-electrolyte fuel cells

被引:14
|
作者
Belgacem, Najib [1 ]
Pauchet, Joel [2 ]
Prat, Marc [1 ]
机构
[1] Univ Toulouse, CNRS, IMFT, INPT,UPS, Toulouse, France
[2] Univ Grenoble Alpes, CEA LITEN, DEHT, 17 Rue Martyrs, F-38054 Grenoble, France
关键词
Current density distribution; Pore network modelling; Condensation; Gas diffusion layer; Rib-channel; Continuum - PNM coupled model; GAS-DIFFUSION LAYERS; PORE-NETWORK; LIQUID WATER; 2-PHASE FLOW; TRANSPORT PHENOMENA; COUPLED CONTINUUM; CATHODE; MODEL; PEFCS; DURABILITY;
D O I
10.1016/j.ijhydene.2018.01.097
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Experimental results based on in-situ measurements at the interface between the catalyst layer and the gas diffusion layer (GDL) on the cathode side at the channel - rib scale show an interesting variation of the current density distribution as the mean current density is increased. It is found that the local current density below the rib median axis corresponds to a maximum at low to intermediate mean current densities and to a minimum when the mean current density is sufficiently high. Also, the higher is the current density, the more marked the minimum. From numerical simulations, it is shown that the current density distribution inversion phenomenon is strongly correlated to the liquid water zone development within the GDL. (C) 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:5112 / 5123
页数:12
相关论文
共 50 条
  • [1] Modeling transport in polymer-electrolyte fuel cells
    Weber, AZ
    Newman, J
    CHEMICAL REVIEWS, 2004, 104 (10) : 4679 - 4726
  • [2] Towards the understanding of the specifics of reactions in polymer-electrolyte fuel cells
    Zhdanov, VP
    Kasemo, B
    SURFACE SCIENCE, 2004, 554 (2-3) : 103 - 108
  • [3] A theoretical study of membrane constraint in polymer-electrolyte fuel cells
    Weber, AZ
    Newman, J
    AICHE JOURNAL, 2004, 50 (12) : 3215 - 3226
  • [4] Transient finite element simulations of polymer-electrolyte fuel cells
    Hsing, IM
    Futerko, PM
    PROCEEDINGS OF THE SECOND INTERNATIONAL SYMPOSIUM ON PROTON CONDUCTING MEMBRANE FUEL CELL II, 1999, 98 (27): : 462 - +
  • [5] NEW PREPARATION METHOD FOR POLYMER-ELECTROLYTE FUEL-CELLS
    UCHIDA, M
    AOYAMA, Y
    EDA, N
    OHTA, A
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1995, 142 (02) : 463 - 468
  • [6] Degradation of Polymer-Electrolyte Membranes in Fuel Cells I. Experimental
    Madden, T.
    Weiss, D.
    Cipollini, N.
    Condit, D.
    Gummalla, M.
    Burlatsky, S.
    Atrazhev, V.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (05) : B657 - B662
  • [7] In situ current distribution measurements in polymer electrolyte fuel cells
    Mench, MM
    Wang, CY
    Ishikawa, M
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (08) : A1052 - A1059
  • [8] Development of a Simple and Rapid Diagnostic Method for Polymer-Electrolyte Fuel Cells
    Pant, Lalit M.
    Yang, Zhiwei
    Perry, Michael L.
    Weber, Adam Z.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 165 (06) : F3007 - F3014
  • [9] A Critical Review of Modeling Transport Phenomena in Polymer-Electrolyte Fuel Cells
    Weber, Adam Z.
    Borup, Rodney L.
    Darling, Robert M.
    Das, Prodip K.
    Dursch, Thomas J.
    Gu, Wenbin
    Harvey, David
    Kusoglu, Ahmet
    Litster, Shawn
    Mench, Matthew M.
    Mukundan, Rangachary
    Owejan, Jon P.
    Pharoah, Jon G.
    Secanell, Marc
    Zenyuk, Iryna V.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2014, 161 (12) : F1254 - F1299
  • [10] An Analysis of the Impact of Particle Growth on Transport Losses in Polymer-Electrolyte Fuel Cells
    Darling, R. M.
    Burlatsky, S. F.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2021, 168 (05)