Feature extraction for one-class classification problems: Enhancements to biased discriminant analysis

被引:23
|
作者
Kwak, Nojun [1 ]
Oh, Jiyong [2 ]
机构
[1] Ajou Univ, Div Elect & Comp Engn, Suwon 441749, South Korea
[2] Seoul Natl Univ, Sch Elect Engn & Comp Sci, Seoul, South Korea
关键词
Classification; One-class; One-against-rest; BDA; LDA; KERNEL; SYSTEM;
D O I
10.1016/j.patcog.2008.07.002
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In many one-class classification problems such as face detection and object verification, the conventional linear discriminant analysis sometimes fails because it makes an inappropriate assumption on negative samples that they are distributed according to a Gaussian distribution. In addition, it sometimes cannot extract sufficient number of features because it merely makes Use of the mean Value of each class. In order to resolve these problems, in this paper, we extend the biased discriminant analysis (BDA) which was originally developed for one-class classification problems. The BDA makes no assumption oil the distribution of negative samples and tries to separate each negative sample as far away from the center of positive samples as possible. The first extension uses a saturation technique to suppress the influence of the samples which are located far away front the decision boundary. The second one utilizes the L1 norm instead of the L2 norm. Also we present a method to extend BDA and its variants to multi-class classification problems. Our approach is considered useful in the sense that without much complexity, it successfully reduces the negative effect of negative samples which are far away from the center of positive samples, resulting in better classification performances. We have applied the proposed methods to several classification problems and compared the performance with conventional methods. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:17 / 26
页数:10
相关论文
共 50 条
  • [31] ON SIMPLE ONE-CLASS CLASSIFICATION METHODS
    Noumir, Zineb
    Honeine, Paul
    Richard, Cedric
    2012 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2012,
  • [32] Feature variance regularization method for autoencoder-based one-class classification
    Kim, Boeun
    Ryu, Kyung Hwan
    Kim, Ji Hee
    Heo, Seongmin
    COMPUTERS & CHEMICAL ENGINEERING, 2022, 161
  • [33] Resampling approach for one-Class classification
    Lee, Hae-Hwan
    Park, Seunghwan
    Im, Jongho
    PATTERN RECOGNITION, 2023, 143
  • [34] Diversity in Ensembles for One-Class Classification
    Krawczyk, Bartosz
    NEW TRENDS IN DATABASES AND INFORMATION SYSTEMS, 2013, 185 : 119 - 129
  • [35] One-Class SVMs for Document Classification
    Manevitz, Larry M.
    Yousef, Malik
    Journal of Machine Learning Research, 2002, 2 : 139 - 154
  • [36] Optimised one-class classification performance
    Oliver Urs Lenz
    Daniel Peralta
    Chris Cornelis
    Machine Learning, 2022, 111 : 2863 - 2883
  • [37] CA2: Class-Agnostic Adaptive Feature Adaptation for One-class Classification
    Zhang, Zilong
    Zhao, Zhibin
    Meng, Deyu
    Zhang, Xingwu
    Chen, Xuefeng
    arXiv, 2023,
  • [38] Instance reduction for one-class classification
    Bartosz Krawczyk
    Isaac Triguero
    Salvador García
    Michał Woźniak
    Francisco Herrera
    Knowledge and Information Systems, 2019, 59 : 601 - 628
  • [39] Active Learning for One-Class Classification
    Barnabe-Lortie, Vincent
    Bellinger, Colin
    Japkowicz, Nathalie
    2015 IEEE 14TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), 2015, : 390 - 395
  • [40] One-class remote sensing classification: one-class vs. binary classifiers
    Deng, Xueqing
    Li, Wenkai
    Liu, Xiaoping
    Guo, Qinghua
    Newsam, Shawn
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2018, 39 (06) : 1890 - 1910