Simple random walk on long range percolation clusters I: heat kernel bounds

被引:22
|
作者
Crawford, Nicholas [1 ]
Sly, Allan [2 ]
机构
[1] Technion Israel Inst Technol, Dept Ind Engn, Haifa, Israel
[2] Microsoft Res, Theory Grp, Redmond, WA USA
关键词
DIAMETER; DENSITY;
D O I
10.1007/s00440-011-0383-2
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we derive upper bounds for the heat kernel of the simple random walk on the infinite cluster of a supercritical long range percolation process. For any d a parts per thousand yen 1 and for any exponent giving the rate of decay of the percolation process, we show that the return probability decays like up to logarithmic corrections, where t denotes the time the walk is run. Our methods also yield generalized bounds on the spectral gap of the dynamics and on the diameter of the largest component in a box. The bounds and accompanying understanding of the geometry of the cluster play a crucial role in the companion paper (Crawford and Sly in Simple randomwalk on long range percolation clusters II: scaling limit, 2010) where we establish the scaling limit of the random walk to be alpha-stable L,vy motion.
引用
收藏
页码:753 / 786
页数:34
相关论文
共 50 条
  • [11] RANDOM WALK DELAYED ON PERCOLATION CLUSTERS
    Comets, Francis
    Simenhaus, Francois
    JOURNAL OF APPLIED PROBABILITY, 2008, 45 (03) : 689 - 702
  • [12] Random walk attracted by percolation clusters
    Popov, S
    Vachkovskaia, M
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2005, 10 : 263 - 272
  • [13] RANDOM-WALK ON PERCOLATION CLUSTERS
    ARGYRAKIS, P
    KOPELMAN, R
    PHYSICAL REVIEW B, 1984, 29 (01) : 511 - 514
  • [14] FRACTAL ENERGY-TRANSPORT - RANDOM-WALK SIMULATIONS ON LONG-RANGE PERCOLATION CLUSTERS
    ARGYRAKIS, P
    KOPELMAN, R
    JOURNAL OF LUMINESCENCE, 1984, 31-2 (DEC) : 654 - 656
  • [15] Quenched invariance principle for simple random walk on clusters in correlated percolation models
    Procaccia, Eviatar B.
    Rosenthal, Ron
    Sapozhnikov, Artem
    PROBABILITY THEORY AND RELATED FIELDS, 2016, 166 (3-4) : 619 - 657
  • [16] Quenched invariance principle for simple random walk on clusters in correlated percolation models
    Eviatar B. Procaccia
    Ron Rosenthal
    Artëm Sapozhnikov
    Probability Theory and Related Fields, 2016, 166 : 619 - 657
  • [17] The speed of biased random walk on percolation clusters
    Berger, N
    Gantert, N
    Peres, Y
    PROBABILITY THEORY AND RELATED FIELDS, 2003, 126 (02) : 221 - 242
  • [18] The speed of biased random walk on percolation clusters
    Noam Berger
    Nina Gantert
    Yuval Peres
    Probability Theory and Related Fields, 2003, 126 : 221 - 242
  • [19] Quenched Large Deviations for Simple Random Walks on Percolation Clusters Including Long-Range Correlations
    Noam Berger
    Chiranjib Mukherjee
    Kazuki Okamura
    Communications in Mathematical Physics, 2018, 358 : 633 - 673
  • [20] Quenched Large Deviations for Simple Random Walks on Percolation Clusters Including Long-Range Correlations
    Berger, Noam
    Mukherjee, Chiranjib
    Okamura, Kazuki
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2018, 358 (02) : 633 - 673